You are here

A technique for quantitative discrimination and analysis between oil and water in drilled bore cores

Technology Number: 


Principal Investigator



Particle Physics

Patent Status: 


A method based on Fast Neutron Resonance Transmission (FNRT) radiography that enables determining weight percentages of oil and water in thick, intact cores taken from subterranean or underwater geological formations. As part of geological exploitation to find oil and water, cores are extracted and tested to determine oil/water content.
This new method allows determining such content rapidly, in non- destructive, specific and quantities analysis of the cores.


  • Determining the identity and proportions of substances of oil and water content and their distribution in inspected cores


  • A non-destructive method which enables to determine the fluid content along the entire length of an intact core or aggregate of cores within their protective sleeves.
  • More comprehensive information and considerable saving of analysis time compared to conventional sampling methods.
    Suitable for all types of rocks including tight-shale rocks.
  • This method enables to measure the weight fraction of oil and water in the core regardless of the core shape, thickness or distribution.
  • The fluid weight fractions in the samples are determined independently, thus the ratio of oil-to-rock weight-ratio is independent of the water content.
  • Due to high penetration of fast neutrons, the method is suitable for screening intact thick rock cores (10-15 cm), for which alternative probes, such as X-rays or slow neutrons suffer limited penetration.

Technology's Essence

In order to map the oil and water content and their distribution, an aggregate of intact cores within their protective sleeves is positioned on a moving conveyor belt and scanned by a broad- energy, fast- neutron beam. The neutrons are detected by a spectroscopic fast neutron imaging detector. The map of neutron-transmission spectra in each pixel provides information of oil/water content and distribution in such cores.