You are here

Spin controlled water electrolysis for efficient production of hydrogen

Technology Number: 

1753

Principal Investigator

Prof.
Ron
Naaman

Department: 

Chemical Physics

Patent Status: 

Granted US 9391285
Summary 

The Chiral Induced Spin Selectivity (CISS) effect, discovered in recent years by Prof. Ron Naaman from the Weizmann Institute of Science, implies that electrons transferred through chiral molecules possess a specific spin orientation. Hence, the molecular chirality and electron spin are correlated.
A team of researchers lead by Prof. Naaman have been investigating the CISS effect in different systems. They found that the high efficiency of many natural multiple electron reactions can also be attributed to spin alignment of the electrons involved.
The present innovation looks at hydrogen production through water electrolysis, showing that when using anodes coated by chiral molecules the efficiency of the electrolysis process increases by 30% compared to using uncoated, regular electrodes.

Applications


  • Control of electron spin
  • Significant reduction of over-potential in spin sensitive electrochemical reactions
  • Efficient electrochemical processes
  • Minimum side reactions

  • Advantages


     

    Technology's Essence


    Spin selective electrodes made from standard electrode material are coated with chiral molecules. These coated electrodes were used for electrolysis of water and showed superior efficacy compared to standard un-coated electrodes, by reduction of the over-potential required for the process. This is explained by the spin selective electron conduction through the chiral layer:

     

     

     

    Hydrogen production as a function of time for (A) the chiral molecules and (B) for the achiral molecules. The potentials in the brackets refer to the over-potential compared to DNA coated electrode. The measurements were conducted at the Eapp for each of the molecules.

     

    More technologies in Chemistry and Nanotechnology