You are here

Production of Lipids and Biofuel in Algea

Technology Number: 


Oil is an important commodity in the global economy, used in numerous industries such as energy, cosmetics, food, personal care, and many more. However, oil based on petroleum is problematic due to finite supply, increasing environmental concerns, and regulations. Oils derived (?) from plant sources tend to compete with valuable arable land and consume fresh water.

Therefore oil sourced from algae as an alternative is an attractive option, as algae does not pollute, does not require arable land, and can use sea water. Yet current methods of producing oil from algae have limited net yields.

The present technology uses the virus EhV201 to modify the metabolism of microalgae Emiliania huxleyi to increase the production of high quality saturated and mono-unsaturated Triacylglycerides (TAGs). The method is simple to apply in increasing TAG content, does not perturb biomass production, and can even simplify the harvesting of the microalgae produced TAGs.


·         Directed production of Algal Oil from saturated and mono-unsaturated triacylglycerides for the production of high value products in the food, energy, cosmetics, and pharmaceutical industries.

·         Secondary and tertiary products can be co-extracted or generated from the TAGs and microalgae for different industrial uses:

o   Glycerol and fatty acids for food and cosmetics.

o   Algal cake (residual microalgae material) for animal feed, fertilizers, and so on.


?  Straightforward procedure

?  High yield

?  No Genetic Modification

?  Simple and economical - no special equipment or conditions to induce TAG production

?  Scalable- as the EhV201 regenerates itself

Technology's Essence

The application of infecting E. huxleyi with EhV201, to increase triacylglyceride (TAG) production represents a promising innovation in creating an alternative source of oil. The system is simple to apply requiring minimal modification of current microalgae bioreactors. The use of the EhV201 to induce TAG production has been shown to be superior to current established methods of nutrient deprivation. Moreover, the technique does not require genetic modification of microalgae, avoiding regulatory challenges. Finally the technology also has added value being environmentally friendly, and possibly opening the avenue for claiming carbon credits, due to the carbon fixation of the microalgae.

More technologies in Agriculture and Plant Genetics