You are here

Category
Technology Name
Briefcase
Scientist
1481
In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and...

In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and high spatial resolution to enable local detection and accurate measurements of extremely low signals. For example, the energy dissipation mechanism in quantum systems is related to preservation of quantum information, which is of particular importance in the field of quantum computing. Available local magnetic imaging methods suffer from low sensitivity and in some cases, low spatial resolution. On the other hand, energy dissipation is not a readily measurable quantity on the nanometer scale and existing thermal imaging methods are not sensitive enough for studying quantum systems and are unsuitable for low temperature operation.

A novel sensor device comprising a nanoscale superconducting quantum interference device (SQUID) was developed by Prof. Zeldov at the Weizmann Institute of Science. The fabrication method enables the miniaturization of the sensor to an effective diameter of below 50 nm and its integration onto the apex of a very sharp tip that is ideally suited for scanning probe microscopy. The extremely small size of the SQUID-on-tip sensor and the ability to approach very close to the sample surface result in nano-metric spatial resolution and a very sensitivity.

Applications


·         Scanning probe microscopy for magnetic and thermal characterization

·         Inspection and probing equipment for quantum computing


Advantages


  • Simple fabrication process

  • High field sensitivity and bandwidth

  • Nanoscale sensors (down to 46 nm in diameter)

  • Tip-sample distance can be as close as a few nanometers


Technology's Essence


A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops. The present invention is a novel sensor device, based on a nanoscale two-junction or multi-junction SQUIDs fabricated on the edge of a sharp tip in a three dimensional geometric configuration. In such a setup, the SQUID can approach the sample to a distance of few nanometers, as opposed to the conventional planar SQUIDs, which results in an extremely high sensitivity.

+
  • Prof. Eli Zeldov
1151
A method to significantly shorten acquisition times of high-quality MRI images. Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of...

A method to significantly shorten acquisition times of high-quality MRI images.

Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.

Applications


  • In vivo diagnostics

  • High-throughput proteomics/metabonomics

  • NMR of unstable chemical systems

  • Metabolic dynamics

  • High-resolution NMR in tabletop systems

  • Extensions to non-MR spectroscopies


Advantages


  • Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
  • Compatible with the majority of multidimensional pulse sequences
  • Can be implemented using conventional NMR and MRI hardware

Technology's Essence


The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.

+
  • Prof. Lucio Frydman
1263
"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

Applications


  • Ultra-fast spin-based field effect transistor (spin-FET) for communications, computing, and defense applications.
  • Nano- and micro-electronic semiconductor devices for polarizing, filtering, switching, guiding, storing, spin detecting and focusing the current carriers.
  • Devices for signal splitting and wide-angle sparging of electrons.

  • Advantages


    • Use of Nou-magnetic semiconductor materials
    • Creation of spin polarize current

    Technology's Essence


    Researchers at the Weizmann Institute of Science have discovered a novel method for controlling and manipulating the propagation of electrons in semiconductors with spin-orbit interaction by acting on the spin polarization of the electrons. It was found that when the spin-orbit coupling strength in the semiconductor is locally varying, electrons of different spin polarizations deflect by different angles at the region of the spin-orbit inhomogeneity. The spin-orbit coupling can be tuned locally and dynamically by applying bias voltage with gates. With suitable angle of incidence of electrons, one spin polarization either can pass through the region of inhomogeneity or totally reflected, in analogy to the total internal reflection phenomenon in optics. In fact, this new approach to spintronics is similar to manipulating polarized light in optical technologies. With this approach (termed "spin-optics") it is possible to manipulate the current carriers in semiconductors (electrons or holes) to achieve the whole spectrum of functionality used in optics of the polarized light, e.g., spin polarizing, spin filtering, switching, guiding as well as spin-based field effect transistor (spin-FET).

    +
    • Prof. Alexander Finkelstein
    1447
    A cheap and effective solution for protecting RFID tags from power attacks. RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in...

    A cheap and effective solution for protecting RFID tags from power attacks.

    RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in 2009. RFID tags were believed to be immune to power analysis attacks since they have no direct connection to an external power supply. However, recent research has shown that they are vulnerable to such attacks, since it is possible to measure their power consumption without actually needing either tag or reader to be physically touched by the attacker. Furthermore, this attack may be carried out even if no data is being transmitted between the tag and the attacker, making the attack very hard to detect. The current invention overcomes these problems by a slight modification of the tag's electronic system, so that it will not be vulnerable to power analysis.

    Applications


    • Improved security of RFID tags.

    Advantages


    • Simple and cost-effective
    • The design involves changes only to the RF front-end of the tag, making it the quickest to roll-out


    Technology's Essence


    An RFID system consists of a high-powered reader communicating with a tag using a wireless medium. The reader generates a powerful electromagnetic field around itself and the tag responds to this field. In passive systems, placing a tag inside the reader's field also provides it with the power it needs to operate. According to the inventive concept, the power consumption of the computational element is detached from the power supply of the tag. Thus, the present invention can almost eliminate the power consumption information.

    +
    • Prof. Adi Shamir
    1529
    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

    Applications


    • Laser optics industry
    • Frequency convertor for broadband signals
    • Generation of ultrafast visible radiation
    • Pulse selection.

    Advantages


    • 90% efficiency of conversion process.
    • Simple and compact
    • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
    • Frequency converter of both broadband signals and ultra-short pulses.

    Technology's Essence


    This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

    +
    • Prof. Yaron Silberberg
    1021
    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

    Applications


    Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

    Technology's Essence


    A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

    +
    • Prof. Zvi Kam

    Pages