You are here

Category
Technology Name
Briefcase
Scientist
1263
"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

Applications


  • Ultra-fast spin-based field effect transistor (spin-FET) for communications, computing, and defense applications.
  • Nano- and micro-electronic semiconductor devices for polarizing, filtering, switching, guiding, storing, spin detecting and focusing the current carriers.
  • Devices for signal splitting and wide-angle sparging of electrons.

  • Advantages


    • Use of Nou-magnetic semiconductor materials
    • Creation of spin polarize current

    Technology's Essence


    Researchers at the Weizmann Institute of Science have discovered a novel method for controlling and manipulating the propagation of electrons in semiconductors with spin-orbit interaction by acting on the spin polarization of the electrons. It was found that when the spin-orbit coupling strength in the semiconductor is locally varying, electrons of different spin polarizations deflect by different angles at the region of the spin-orbit inhomogeneity. The spin-orbit coupling can be tuned locally and dynamically by applying bias voltage with gates. With suitable angle of incidence of electrons, one spin polarization either can pass through the region of inhomogeneity or totally reflected, in analogy to the total internal reflection phenomenon in optics. In fact, this new approach to spintronics is similar to manipulating polarized light in optical technologies. With this approach (termed "spin-optics") it is possible to manipulate the current carriers in semiconductors (electrons or holes) to achieve the whole spectrum of functionality used in optics of the polarized light, e.g., spin polarizing, spin filtering, switching, guiding as well as spin-based field effect transistor (spin-FET).

    +
    • Prof. Alexander Finkelstein
    1447
    A cheap and effective solution for protecting RFID tags from power attacks. RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in...

    A cheap and effective solution for protecting RFID tags from power attacks.

    RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in 2009. RFID tags were believed to be immune to power analysis attacks since they have no direct connection to an external power supply. However, recent research has shown that they are vulnerable to such attacks, since it is possible to measure their power consumption without actually needing either tag or reader to be physically touched by the attacker. Furthermore, this attack may be carried out even if no data is being transmitted between the tag and the attacker, making the attack very hard to detect. The current invention overcomes these problems by a slight modification of the tag's electronic system, so that it will not be vulnerable to power analysis.

    Applications


    • Improved security of RFID tags.

    Advantages


    • Simple and cost-effective
    • The design involves changes only to the RF front-end of the tag, making it the quickest to roll-out


    Technology's Essence


    An RFID system consists of a high-powered reader communicating with a tag using a wireless medium. The reader generates a powerful electromagnetic field around itself and the tag responds to this field. In passive systems, placing a tag inside the reader's field also provides it with the power it needs to operate. According to the inventive concept, the power consumption of the computational element is detached from the power supply of the tag. Thus, the present invention can almost eliminate the power consumption information.

    +
    • Prof. Adi Shamir
    1529
    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

    Applications


    • Laser optics industry
    • Frequency convertor for broadband signals
    • Generation of ultrafast visible radiation
    • Pulse selection.

    Advantages


    • 90% efficiency of conversion process.
    • Simple and compact
    • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
    • Frequency converter of both broadband signals and ultra-short pulses.

    Technology's Essence


    This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

    +
    • Prof. Yaron Silberberg
    1151
    A method to significantly shorten acquisition times of high-quality MRI images. Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of...

    A method to significantly shorten acquisition times of high-quality MRI images.

    Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.

    Applications


    • In vivo diagnostics

    • High-throughput proteomics/metabonomics

    • NMR of unstable chemical systems

    • Metabolic dynamics

    • High-resolution NMR in tabletop systems

    • Extensions to non-MR spectroscopies


    Advantages


    • Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
    • Compatible with the majority of multidimensional pulse sequences
    • Can be implemented using conventional NMR and MRI hardware

    Technology's Essence


    The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.

    +
    • Prof. Lucio Frydman
    1266
    Fast cross-sectioning using multiphoton microscope.  The conventionally used laser-scanning microscopy, confocal and multiphoton microscopy, although being capable of performing optical sectioning, requires a long image acquisition time, tens of milliseconds per section in current commercial systems,...

    Fast cross-sectioning using multiphoton microscope.  The conventionally used laser-scanning microscopy, confocal and multiphoton microscopy, although being capable of performing optical sectioning, requires a long image acquisition time, tens of milliseconds per section in current commercial systems, due to the scanning process. The field of confocal microscopy relies on the idea of point-by-point illumination of a sample and use mechanical scanning in order to collect an image. Multiphoton microscopes offer a different mechanism for optical sectioning and the need for rejecting out-of-focus scattering is practically eliminated. However, the process is efficient only when the peak intensity of the illuminating light is high. Thus there is a growing need to facilitate the multiphoton microscopy imaging of a sample by providing a novel illumination configuration and method of its operation.

    Depth-resolved microscopy has been, for decades, practically synonymous with laser-scanning microscopy. The technique of the present invention provides for full-frame depth-resolved microscopy (or material processing), using an extremely simple setup as well as standard components, aiming at eliminating mechanical scanning across the sample thus making the image acquisition much faster.

     

    Applications


    • Optical system for use in a multi-photon microscope.
    • Material processing, e.g. simultaneous depth-resolved modification of a transparent substrate by femtosecond radiation.

    Advantages


    • The present invention provides for fast imaging/processing of a sample without scanning.
    • The temporal profile of the pulse remains unchanged as it propagates through the sample.
    • Single-shot depth resolved microscopy is able to capture extremely rapid dynamics, up to the nanosecond regime.
    • The setup enables full-frame video-rate fluorescence lifetime imaging, simply by gating the CCD intensifier.
    • Enables utilization of structure illumination microscopy.
    • Can be used with practically any multiphoton process.

    Technology's Essence


    The present invention provides the ability for illuminating a region of a sample with dimensions many orders of magnitude larger than a diffraction-limited spot of the imaging lens arrangement used in the microscope. Using this method, full-frame depth-resolved microscopy can be achieved using an extremely simple setup and standard components. the proposed microscope utilizes a pulse manipulator arrangement including a temporal pulse manipulator configured to define a surface, which extends perpendicular to the optical axis of a microscope in the front focal plane of an imaging lens arrangement, and which is patterned to affect trajectories of light components of the input short pulse impinging onto different points of this surface to direct these light components along different optical paths.

    This novel invention is not limited to imaging techniques in general and to microscopy in particular and can also be used for material processing.

    +
    • Prof. Yaron Silberberg

    Pages