You are here

Physics and Electro-Optics

Category
Technology Name
Briefcase
Scientist
1845
A new technology for producing flat optical components based on optical metasurfaces. These components can potentially serve high resolution imaging, spectrometry, light processing and beam shaping devices. The optical metasurfaces that we develop are composed of closely spaced optical nanoantennas...

A new technology for producing flat optical components based on optical metasurfaces. 
These components can potentially serve high resolution imaging, spectrometry, light processing and beam shaping devices. The optical metasurfaces that we develop are composed of closely spaced optical nanoantennas which can be deposited on a wide variety of rigid and flexible surfaces. The engineered nanoantennas allow capturing and directing light at specific colors and polarizations and by that create surfaces with engineered and ‘unnatural’ optical functionality. The active area of the component can be ultrathin allowing in addition to the unique optical properties to reduce the size of the optical components.

Moreover, functionality can be enhanced by creating multilayered components.

Applications


The proposed technology can be used to generate a wide variety of novel diffractive optical elements including flat lenses with multispectral and polarization dependent functionality, multifocal components, beam shapers etc. So far we have demonstrated in the lab the use of this technology to correct chromatic aberrations from a diffractive lens and to generate multifunctional laser beam shapers.


Figure 1(a) shows the calculated chromatic aberrations of the focal point using a conventional Fresenel Zone Plate (FZP) and figure 1(b) shows simulation results of focusing light at wavelength of 620 nm and wavelength of 450 nm through a conventional FZP which was designed to focus the light at 620nm to 1mm. It can be seen that light at 450nm is focused further away to ~1.4 mm. The same problem will occur when imaging through such a lens – only one of the wavelengths will be in focus at the image plane. Figure 1(c) shows the simulation results of the focusing properties of a metamaterials based FZP (Meta-FZP). The two wavelengths share the same position of the focal spot which means that chromatic aberrations are corrected. We can use the same technology to correct more than two wavelengths. Fig. 1(d) illustrates this concept.
Figure 1(e) shows a preliminary prototype of a metamaterial based lens that was designed and fabricated at Tel Aviv University nano-center. Fig. 1(f) shows the ability of the meta-FZP to focus blue and yellow light to the same spot by that correcting the chromatic abberations. This shows the first demonstration to our knowledge of chromatic abberation correction by metasurfaces.
In addition to chromatic abberation corrections we demonstrate that this technology can be used for multifunctional laser beam shaping. Fig. 1(g)-(j) present experimental results present experimental results for multifuntional beam shapers which are based on metasurfaces.
The technology can be enhanced also for multispectral manipulation and analysis.

+
1844
An innovative technique and system for forming 1-dimensional counter-propagating electronic states with opposite spins – helical states. Such a system when coupled to a conventional superconductor is expected to form a topological superconductor hosting Majorana zero modes which can be used as...

An innovative technique and system for forming 1-dimensional counter-propagating electronic states with opposite spins – helical states. Such a system when coupled to a conventional superconductor is expected to form a topological superconductor hosting Majorana zero modes which can be used as topologically protected quantum bits.

Quantum computing is a technology that holds the potential to revolutionize computational power and eclipse even today’s most powerful computers. Thus, the technology holds potential for many applications such as cryptography, computational chemistry, machine learning, artificial intelligence and optimization. However, the basic building blocks of a quantum computer, the quantum bits (qubits), are fragile and prawn to errors. There is therefore a major need to develop quantum hardware that allows for complex quantum computations to be performed without errors and many platforms are being explored to achieve this.

In recent years, there has been a great interest in a novel type of qubits called topological qubits, which have a unique protection from the typical fragility of other qubit systems. Several successful experiments (mostly using semiconducting nanowires) have demonstrated initial success in forming these qubits and there are currently great effort to develop these systems. However, challenges in making reproducible and identical qubits with them and the limited fabrication methods of these systems, make scaling up very difficult.

The present technology from the group of Prof. Mordechai Heiblum at the Weizmann Institute of Science offers a novel platform that can be used to forming topological qubits. This platform utilizes 2-dimensional-electron-gas systems where rich, robust and scalable fabrication techniques, which have been developed for several decades, exist. Moreover, the system utilizes the robust and well understood edge states of the quantum Hall effect and allows for an increased flexibility in manipulation of these states in comparison to similar platform based on 1d spin-orbit based semiconductors.

Advantages


·         Robust ­– utilizes edge states of the quantum hall effect.

·         Flexibility in manipulation – 2-dimensional system compared to current 1-dimensional systems.

·         Standard materials and fabrication methods – for instance GaAs/AlGaAs heterostructures.

·         Highly controllable

·         Scalable


Technology's Essence


Topological qubits, which have sparked intensive interest in recent years are based on the engineering of an exotic state of matter called a topological superconductor. To engineer a topological superconductor, superconductivity from a conventional superconductor is induced in a so called 1-dimentional helical system - a system of two counter-propagating, 1-dimnesional states with opposite spins.

The group of Prof. Heiblum has developed a new method and a platform to engineer robust and highly controllable 1-dimnensional helical systems. The method was implemented in GaAs/AlGaAs heterostructures where the existence of well-known MBE growth techniques and well-known fabrication methods allows for a high level of control, high level of flexibility and diversity in devices’ design possibilities, and easy scale up.

The essence of the technology is the use of a carefully designed quantum well structure which hosts two sub-bands of 2D electrons; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes (belonging to Landau-levels with opposite spins) are formed – rendering the modes helical. The quantum well must be designed so that charge transfer between the two sub-bands allows for the counter propagating edge states to be formed in the interface between two gated regions.

+
  • Prof. Mordechai Heiblum
1815
This novel method utilizes polarized light that in contrast to conventional methods does not interact directly with the material or with the material’s surface. Here the material to be tested is secured underneath a reflective material, such that the polarized light reflected off the reflective...

This novel method utilizes polarized light that in contrast to conventional methods does not interact directly with the material or with the material’s surface. Here the material to be tested is secured underneath a reflective material, such that the polarized light reflected off the reflective material does not interact with the sample itself. Accordingly, the polarized light is only affected by expansion/contraction of the material that displaces the reflective material, but is not affected by material’s properties such as refractive index and surface-layer composition/thickness. The novel methods of this invention thus allow the isolation of expansion/contraction parameters of a material. Accordingly, the methods of this invention allow facile, fast and accurate measurement of expansion/contraction properties of a material using polarized light.

Applications


Measuring the expansion/contraction of materials for the evaluation of qualitative and quantitative electro-mechanic properties (e.g. piezo-electric parameters) and thermal expansion properties of materials using a sensitive and non-complex system.


Advantages


·      Relatively simple and inexpensive

·      High sensitivity - comparable to extremely complex and expensive interferometers

·      Supports a higher frequency range than existing interferometers.


Technology's Essence


Here the material to be tested is secured underneath a reflective material, such that the polarized light reflected off the reflective material does not interact with the sample itself. Accordingly, the polarized light is only affected by expansion/contraction of the material that displaces the reflective material, but is not affected by material’s properties such as refractive index and surface-layer composition/thickness.

+
  • Prof. Igor Lubomirsky
1717
Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of...

Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of the absorber.
Currently available systems, based on rare-earth-doped dielectrics, and organic materials are limited in both tunability and absorption cross-section. In fact, no known up-conversion systems operate on photons in the 1000-1500 nm range.
Stable inorganic nanocrystalline up-conversion systems designed at the Weizmann Institute of Science provide broad tunability of both the absorption edge and the luminescence color. These materials have the potential to be utilized in applications such as high-energy photon sources, photovoltaics and IR detection.

Applications


  • Easy to manufacture

  • Robust systems

  • Operation at room temperature


Advantages


  • Photon sources

  • Photovoltaics

  • IR detectors


Technology's Essence


The new up-conversion systems are based on a novel design comprising a compound semiconductor nanocrystal, which incorporates two quantum dots with different bandgaps separated by a tunneling barrier. The expected up-conversion mechanism occurs by the sequential absorption of two photons. The first photon excites an electron–hole pair by interband absorption in the lower-energy core, resulting in a confined hole and a relatively delocalized electron. The second absorbed photon leads to further excitation of the hole, allowing it to cross the barrier layer. This, in turn, is followed by radiative recombination with the delocalized electron.

+
  • Prof. Dan Oron
1765
A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron.  Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns....

A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron. 
Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns. These techniques utilize radiation in the X-ray regime to image non-periodic objects in sizes that prohibit the use of larger wavelengths. However, retrieving the phase information of the diffraction pattern is not a trivial task, as current methods are divided based on a tradeoff between experimental complexity and computational reconstruction efficiency.
The method described here is suitable for use with existing lensless imaging techniques to provide direct, robust and efficient phase data while requiring reduced computational and experimental complexity. This method, demonstrated in a laboratory setup on 2D objects, is also applicable in 1D. It can be applied to various phase retrieval applications such as coherent diffractive imaging and ultrashort pulse reconstruction

Applications


  • Phase microscopy
  • Signal processing
  • Holography
  • X-ray imaging

Advantages


  • A Generic solution to the phase retrieval problem
  • Non-iterative approach
  • An efficient and noise robust tool

Technology's Essence


The method is based on the fact that the Fourier transform of the diffraction intensity measurement is the autocorrelation of the object. The autocorrelation and cross-correlations of two sufficiently separated objects are spatially distinct. Based on this, the method consists of three main steps: (a) The sum of the objects’ autocorrelations, as well as their cross-correlation, are reconstructed from the Fourier transform of the measured diffraction pattern. (b) The individual objects’ autocorrelations are reconstructed from their sum and the cross-correlation. (c) Using the two intensities and the interference cross term, double-blind Fourier holograph is applied to recover the phase by solving a set of linear equations.

+
  • Prof. Dan Oron
1730
Production of carbon nanotube based transistors through a process comprised of identification, selection, and placement of pristine carbon nanotubes in conjunction with standard electrical circuitry.Semiconductor devices are vital to everyday life, however conventional semiconducting materials are...

Production of carbon nanotube based transistors through a process comprised of identification, selection, and placement of pristine carbon nanotubes in conjunction with standard electrical circuitry.
Semiconductor devices are vital to everyday life, however conventional semiconducting materials are quickly approaching their limitations. As devices transition from the microscale to the nanoscale, new techniques for their assembly and testing of their properties must be created. Controllable nanofabrication methods are of increasing importance across a wide field of electronics in everything from energy efficient LEDs in flat-screen monitors to transistors for ultra-powerful computers. Our process presents a novel method for producing high quality nanoscale carbon nanotube based transistors. These methods will be of the utmost importance in the forthcoming nano-revolution.

Applications


  • Produce flawless carbon nanotubes
  • Identify, select, and position nanotubes with precision
  • Room temperature operation
  • High sensitivity
  • High resolution

Advantages


  • Single electron transistor (SET) nanoscale imaging
  • Novel nano-electromechanical devices

Technology's Essence


The principle behind this technology is two-fold: 1) Synthesis and selection method of flawless carbon nanotubes, and 2) their combination with nanoscale electric circuitry to form fully controlled composite nanoscale electronic device.
Selection of the carbon nanotube(s) is assisted by a scanning probe microscope (SPM). A composite electronic device is assembled from two separated chips; a nanotube chip where nanotubes are grown over wide trenches, and a standard circuit chip with electrode contacts surrounding the gates to be measured. The nano-assembly is achieved by inserting an SPM cantilever into a trench on the nanotube chip and placing the circuit chip over a suitable nanotube. Once in place, the nanotube is cut locally by passing a strong current between the electrode contacts, and the composite chip is formed.
This composite electronic device can be used to map electronic potentials with high resolution of 100 nm, high sensitivity of 1microV/Hz1/2, at frequencies of 100 MHz and more and all this at room temperature.

+
  • Prof. Shahal Ilani
1802
A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations. Pulses are applied in various fields such as oil & gas...

A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations.
Pulses are applied in various fields such as oil & gas exploration, detection (e.g. sonar, lidar and radar) and communication. When pulses pass through dispersive media, the arrival times at the detector of different frequency components may differ, and as a result the pulse may become degraded (e.g. transformed to a longer pulse with reduced intensity), even to the level of becoming indistinguishable in terms of signal to noise. This problem becomes even more challenging when detecting short pulses that travel through complex or unknown media.
The new method presented here provides a proven and efficient solution that can be applied for different scenarios where short pulses dispersed by complex media are used. 

Applications


  • Detection and surveying technologies- sonar, lidar, radar etc

Advantages


  • Efficient, requires limited computational resources
  • Generic, can be applied to various setups
  • Easily implementable into existing systems

Technology's Essence


The method includes obtaining an input array of cells, each indicating an intensity of a frequency component of the signal at a representative time. A fast dispersion measure transform (FDMT) is applied to concurrently sum the cells of the input array that lie along different dispersion curves, each curve defined by a known non-linear functional form and being uniquely characterized by a time coordinate and by a value of the dispersion measure. Application of FDMT includes initially generating a plurality of sub-arrays, each representing a frequency sub-band and iteratively combining pairs of adjacent sub-arrays in accordance with an addition rule until all of the initially generated plurality of sub-arrays are combined into an output array of the sums, in which a cell of the output array that is indicative of a transmitted pulse is identified.

+
  • Prof. Avishay Gal-Yam
1583
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel...

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel technique developed at Weizmann Institute, has a disruptive potential to change this market.  

Prof. Y. Imry and his team at Weizmann Institute came up with Thermal Electric conversion technique, based on a new TE device architecture which allows performance enhancement. The core invention is in the field of Bi-junction thermoelectric device architecture, having a thermoelectric gate interposed between two electric regions, leading to thermal electric conversion efficiency optimization.

Applications


Various TE devices will benefit from better TE efficiency, achieved by the developed conversion technique. The growing market for thermoelectric energy harvesters will reach $865 million by 2023. Current TE market is driven by consumer energy harvesting applications and some niche segments:

  •  Automotive energy harvesting applications, since around 40% of the energy produced by internal combustion engines is currently lost in heat through the exhaust.
  • Wireless devices/sensors segment is forecasted to account for over a third of the overall market for thermoelectric harvesters and cooling by 2023.

Advantages


In order to drive down the thermoelectric module costs and facilitate broad deployment, TE has several barriers to overcome: 

  •  low conversion efficiency;
  • toxicity and low availability of chemical elements constituting part of the thermoelectric materials.

 In this context, the main TE market challenges are reaching higher efficiencies using low cost thermoelectric materials. These challenges can be addressed by the proposed technology.


Technology's Essence


Prof. Y. Imry and his team at Weizmann Institute have developed novel bi-junction TE device, having a thermoelectric gate interposed between two electric regions, aiming at TE efficiency improvement. Thermoelectric efficiency depends on the figure of merit (ZT). The figure-of-merit curves, for the developed 3-T TE device configurations show that higher ZT should be achieved.  

The secret essence of the invented configuration is in using two independently adjustable input parameters - voltage and temperature - as drivers for optimizing device thermoelectric efficiency.

 

+
  • Prof. Yoseph Imry
1644
Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices. The present innovation is based on...

Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices.

The present innovation is based on Chiral Induced Spin Selectivity (CISS) effect that was established experimentally and theoretically in the last decade, and allows for production of inexpensive, high-density universal memory-on-chip devices, that don’t require the use of permanent magnets.

Applications


·         Inexpensive, high-density universal memory-on-chip devices

·         The technology can be used as superior alternative for both Random Access memory and Flash memory

·         Surface-controlled spintronic devices

·         Logic and data processing


Advantages


·         Up to 70 times more storage on the same physical size

·         Up to 100 times lower energy consumption

·         Si-Compatible

·         High density (can reach Si technology limit)

·         Estimated low cost

·         Overcomes limitations of other magnetic-based memory technologies


Technology's Essence


Ferromagnets can be magnetized either by external magnetic fields or by spin polarized current. However, the current density required for inducing magnetization is extremely high and significantly affects the device’s structure and performance. The newly discovered CISS effect allows for magnetization switching of Ferromagnets, which is induced solely by adsorption of chiral molecules, where much lower current density is sufficient to induce the magnetization reversal. Chiral Memory technology uses the CISS effect for spin selectivity instead of the common ferromagnetic-based spin filters. This allows, in principle, the memory bit to be miniaturized down to a single magnetic nanoparticle or a nano-scale domain. The operation principle of the device relies on the spin-selective transmission of electrons through organic chiral molecules to the ferromagnetic layer of the device, which results in the magnetization of this layer and efficient storing of bits of information. The magnetization switching by local adsorption of chiral molecules eliminates the need for a permanent magnet.

+
  • Prof. Ron Naaman
1554
We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer...

We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer need to be of the same resonance. In addition, this technique is very susceptible to noise which limits efficiency. The present invention provides a technique for a robust and efficient mid-range wireless power transfer between two coils. This technique can transfer the energy between the coils without being sensitive to any resonant constrains, noise and other interferences that exist in the neighborhood of the coils

Applications


  • Simultaneous energy transfer to several electrical gadgets.

Advantages


  • Efficient
  • Not sensitive to electrical interference.
  • No need for an exact resonance match between transmitter and transformer.

Technology's Essence


The efficiency and robustness of this technology is achieved by adapting the process of rapid adiabatic passage (RAP) for a coherently driven two state atom to the field of wireless energy transfer. In other words, the resonance of the transmitter is tuned adiabatically to scan a resonant frequency range, thus arriving at a dynamic solution to the electrical transfer problem.

+
  • Prof. Yaron Silberberg
1596
A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a...

A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a light beam requires fast, accurate, and simple measurement techniques to fully characterize it’s properties.Currently, the ability to measure light polarization exists only qualitatively and at only one specific point in a light beam. Our scientific team has developed a new method to measure changing light polarizations in real-time. 
Our demonstrated system presents a simple way to continuously measure and quantify light polarizations in real-time, throughout the entire length of a light beam. This method has the potential to set a new industry standard, and could lead to a number of applications that were previously not possible.
 

Applications


  • Molecular imaging
  • Medical and industrial lasers
  • Non-destructive testing
  • Analytical chemistry
  • Fiber-optic communications
  • Cryptography
  • Astronomy

Advantages


  • Proved accuracy
  • Simple technique
  • Compact configuration
  • Incorporate into existing equipment
  • Can measure fully polarized, partially polarized, and un-polarized light
  • Two modes of operation:   Space-variant polarization measurements and Wavelength-variant polarization measurements

Technology's Essence


Our polarization measurement technique is based on splitting an input light beam into six parallel beams, each having a predetermined shift in the polarization state with respect to the other beams. The beam components are simultaneously detected using a pixel matrix, such as a CCD camera, to determine their intensity distribution. From this, the polarization state distribution along the cross-section of the input optical beam is determined and we can calculate the Stokes parameters, a set of values which defines polarized light. This allows us to characterize and quantify fully polarized, partially polarized, and un-polarized light at every point in the beam in real-time, with either static or dynamic polarization states. Our method can be applied for two conditions of varying polarizations – changing with position (space-variant) or changing in color (wavelength-variant).

+
  • Prof. Nir Davidson
1263
"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

Applications


  • Ultra-fast spin-based field effect transistor (spin-FET) for communications, computing, and defense applications.
  • Nano- and micro-electronic semiconductor devices for polarizing, filtering, switching, guiding, storing, spin detecting and focusing the current carriers.
  • Devices for signal splitting and wide-angle sparging of electrons.

  • Advantages


    • Use of Nou-magnetic semiconductor materials
    • Creation of spin polarize current

    Technology's Essence


    Researchers at the Weizmann Institute of Science have discovered a novel method for controlling and manipulating the propagation of electrons in semiconductors with spin-orbit interaction by acting on the spin polarization of the electrons. It was found that when the spin-orbit coupling strength in the semiconductor is locally varying, electrons of different spin polarizations deflect by different angles at the region of the spin-orbit inhomogeneity. The spin-orbit coupling can be tuned locally and dynamically by applying bias voltage with gates. With suitable angle of incidence of electrons, one spin polarization either can pass through the region of inhomogeneity or totally reflected, in analogy to the total internal reflection phenomenon in optics. In fact, this new approach to spintronics is similar to manipulating polarized light in optical technologies. With this approach (termed "spin-optics") it is possible to manipulate the current carriers in semiconductors (electrons or holes) to achieve the whole spectrum of functionality used in optics of the polarized light, e.g., spin polarizing, spin filtering, switching, guiding as well as spin-based field effect transistor (spin-FET).

    +
    • Prof. Alexander Finkelstein
    1447
    A cheap and effective solution for protecting RFID tags from power attacks. RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in...

    A cheap and effective solution for protecting RFID tags from power attacks.

    RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in 2009. RFID tags were believed to be immune to power analysis attacks since they have no direct connection to an external power supply. However, recent research has shown that they are vulnerable to such attacks, since it is possible to measure their power consumption without actually needing either tag or reader to be physically touched by the attacker. Furthermore, this attack may be carried out even if no data is being transmitted between the tag and the attacker, making the attack very hard to detect. The current invention overcomes these problems by a slight modification of the tag's electronic system, so that it will not be vulnerable to power analysis.

    Applications


    • Improved security of RFID tags.

    Advantages


    • Simple and cost-effective
    • The design involves changes only to the RF front-end of the tag, making it the quickest to roll-out


    Technology's Essence


    An RFID system consists of a high-powered reader communicating with a tag using a wireless medium. The reader generates a powerful electromagnetic field around itself and the tag responds to this field. In passive systems, placing a tag inside the reader's field also provides it with the power it needs to operate. According to the inventive concept, the power consumption of the computational element is detached from the power supply of the tag. Thus, the present invention can almost eliminate the power consumption information.

    +
    • Prof. Adi Shamir
    1529
    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

    Applications


    • Laser optics industry
    • Frequency convertor for broadband signals
    • Generation of ultrafast visible radiation
    • Pulse selection.

    Advantages


    • 90% efficiency of conversion process.
    • Simple and compact
    • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
    • Frequency converter of both broadband signals and ultra-short pulses.

    Technology's Essence


    This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

    +
    • Prof. Yaron Silberberg
    1151
    A method to significantly shorten acquisition times of high-quality MRI images. Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of...

    A method to significantly shorten acquisition times of high-quality MRI images.

    Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.

    Applications


    • In vivo diagnostics

    • High-throughput proteomics/metabonomics

    • NMR of unstable chemical systems

    • Metabolic dynamics

    • High-resolution NMR in tabletop systems

    • Extensions to non-MR spectroscopies


    Advantages


    • Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
    • Compatible with the majority of multidimensional pulse sequences
    • Can be implemented using conventional NMR and MRI hardware

    Technology's Essence


    The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.

    +
    • Prof. Lucio Frydman

    Pages