You are here

Optical Conversion

Technology Number: 


Principal Investigator



Physics of Complex Systems

We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.


  • Laser optics industry
  • Frequency convertor for broadband signals
  • Generation of ultrafast visible radiation
  • Pulse selection.


  • 90% efficiency of conversion process.
  • Simple and compact
  • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
  • Frequency converter of both broadband signals and ultra-short pulses.

Technology's Essence

This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

More technologies in Physics and Electro-Optics