You are here

DEVICES AND METHODS TO MEASURE SMALL DISPLACEMENTS

Technology Number: 

1815

Principal Investigator

Prof.
Igor
Lubomirsky

Department: 

Materials and Interfaces
Summary 

This novel method utilizes polarized light that in contrast to conventional methods does not interact directly with the material or with the material’s surface. Here the material to be tested is secured underneath a reflective material, such that the polarized light reflected off the reflective material does not interact with the sample itself. Accordingly, the polarized light is only affected by expansion/contraction of the material that displaces the reflective material, but is not affected by material’s properties such as refractive index and surface-layer composition/thickness. The novel methods of this invention thus allow the isolation of expansion/contraction parameters of a material. Accordingly, the methods of this invention allow facile, fast and accurate measurement of expansion/contraction properties of a material using polarized light.

Applications


Measuring the expansion/contraction of materials for the evaluation of qualitative and quantitative electro-mechanic properties (e.g. piezo-electric parameters) and thermal expansion properties of materials using a sensitive and non-complex system.


Advantages


·      Relatively simple and inexpensive

·      High sensitivity - comparable to extremely complex and expensive interferometers

·      Supports a higher frequency range than existing interferometers.


Technology's Essence


Here the material to be tested is secured underneath a reflective material, such that the polarized light reflected off the reflective material does not interact with the sample itself. Accordingly, the polarized light is only affected by expansion/contraction of the material that displaces the reflective material, but is not affected by material’s properties such as refractive index and surface-layer composition/thickness.