You are here

Category
Technology Name
Briefcase
Scientist
1559
The Weizmann Institute is actively seeking a company interested in commercializing a novel technology that reduces sulfur content in refined fuels. Fossil fuels sources such as oil, coal, natural gas, shales and others contain varying amounts of sulfur compounds. As world reserves of high quality...

The Weizmann Institute is actively seeking a company interested in commercializing a novel technology that reduces sulfur content in refined fuels. Fossil fuels sources such as oil, coal, natural gas, shales and others contain varying amounts of sulfur compounds. As world reserves of high quality fossil fuels diminish and regulatory standards tighten on reduced levels of sulfur containing emissions, the need for effective methods for removal of refractory sulfides from refined fuels arises.

This invention makes use of a catalytic reaction to remove refractory sulfides from refined fuels thereby enabling the reduction and removal of sulfides. The catalyst is then purified by aerobic oxidation (low temperature combustion) and reused.

Applications


  • Desulfurization of fuels in oil refineries - useful for deep desulfurization of fuels containing relatively small amounts of organic sulfur compounds.

Advantages


  • The process does not require high pressure hydrogen and can be carried out at low temperature.

  • The process complements present HDS technology tp remove refractory sulfides.

  • Catalyst recovery and recycle is carried out by low temperature pyrolysis.

  • No need for additional separation or adsorption processes.

  • No need for additional fuel drying steps.


Technology's Essence


The invention relates to a method for removing heteroaromatic, refractory sulfides down to sub-ppm levels from refined fuels such as gasoline, diesel oil and kerosene. The process uses a heterogeneous catalyst that reacts with the refractory sulfides and oligomerizes or polymerizes them to insoluble polymers that are adsorbed on the catalyst. After use, the catalyst is recovered and purified by low temperature aerobic total oxidation (combustion) reused. This process completes desulfurization of fuels in oil refineries.

+
  • Prof. Ronny Neumann
1646
Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series...

Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series in one continuous experiment.
In order to design and develop inhibitors for therapeutic purposes, the reaction mechanisms of enzymes must be understood. For biological applications, a common methodology of addressing this need is combining Rapid Freeze Quench with Electron Paramagnetic Resonance (RFQ)-EPR, which allows the trapping and analysis of short lived intermediates in chemical reactions. However, commercial RFQ-EPR devices are limited for high field EPR applications due to the demand of large sample volumes for each time point.
Prof. Goldfarb and her team built a new RFQ apparatus based on microfluidic flow and unique ejection and freezing systems, which can be used for collecting small volume samples in capillaries for high field EPR.

Applications


This technology, combined with the variety of W-band high resolution EPR technique (ENDOR, DEER and ESEEM) enables better mechanistic studies of enzymatic reactions, with an emphasis on structural transformations during the reaction, in an efficient and accurate way.


Advantages


  • Collecting all RFQ time points in one continues experiment.
  • Produce small volume samples in the range of a few µl, and handles small capillaries, for high field ERP.
  • An improved dead time of ~5ms, relative to the commercial RFQs with a typical dead-time of 5–10 ms.
  • Ease-of-use and speed.

Technology's Essence


The innovative apparatus consists of two main parts: the microfluidic device and the freeze-quench setup. The microfluidic device comprises a mixer, which mixes the two reacting solutions, a flow path where the reaction occurs, and a sprinkler from which the solution is sprayed out of the device. Prof. Goldfarb and her colleagues improved the common mixing device by adding a fast stream of nitrogen gas which mixes with the ejected reaction solution, and sprays the frozen aerosol out in tiny drops at high speed.
The innovative RFQ device was planned to have a cold solid surface on which the freezing happens rather than the traditional ejection into a cold liquid, in order to minimize the losses of the frozen solution. Moreover the plate rotates at a speed correlated to the flow speed of the solution, thus samples of different reaction times can freeze on a different radius. The frozen samples are then collected into quartz capillaries.

+
  • Prof. Daniella Goldfarb
1568
A new multi-state molecular building block for tomorrow’s electric circuits and memory storage devices was realized. Information technology is the core of many industries today. The main challenge facing this industry is the need for miniaturization, due to an ever increase in information density....

A new multi-state molecular building block for tomorrow’s electric circuits and memory storage devices was realized. Information technology is the core of many industries today. The main challenge facing this industry is the need for miniaturization, due to an ever increase in information density. Molecular information processing and storage is becoming a logical candidate to replace the available methods, by use of molecules as building blocks for “bottom up” approaches. A memory device that exists in multiple stable states with a molecular based assembly was prepared. This can offer new ways in which information is processed (multiple-threads) as well as increasing the information density in random access memory (RAM), storage devices and methods.

Applications


  • Binary and ternary Static Random Access Memory
  • Multi-State Dynamic Random Access Memory

  • Multi-State Flash Memory

  • Multi-State Solid State Drive (SSD)

  • Multi-State Information Processing Units


Advantages


  • Low manufacturing cost

  • Robustness

  • Optical read out allows fast data transfer, and non destructive information access

  • Short response time and fast read-out.

  • System is easy to reset

  • Little material is needed/ environmentally friendly.

  • The system can be integrated with other electronic circuits

  • Multi-valued information storage

  • Increase in information density, with no need for additional spatial requirements.

  • Alternative to silicon  technology


Technology's Essence


Electronically addressable multi-state memory for sequential logic flip-flop, flip-flap-flop circuits, and higher order switchable memory circuits,  can be constructed by materials composed of a molecular based assembly that can exist in multiple states. Since the optical output is a precise function of the applied voltage, multi-valued information can be written on to the assembly by applying specific potential biases. The read and write cycle is completed by monitoring the induced optical changes of the system. This system uses the same electrical inputs as conventional memory devices and uses an optical read-out which is non destructive and fast. The properties of the device can be used to create an apparatus for information storage especially with respect to developing solid-state drives in computers (SSDs).

+
  • Prof. Milko E. Van der Boom
1597
Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or...

Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or electrostrictive. Modern inorganic piezoelectric devices are used for a wide variety of applications from inexpensive speakers and headphones, to sophisticated sonar transducers. Over the last several decades, these materials have become highly reliable and technologically mature, but the magnitude of the mechanical stress they can generate in response to an input electric signal has reached an upper limit.This innovative technology applies Gadolinium-doped Cerium Oxide (Gd-doped CeO2) to piezoelectric and electrostrictive devices and will enable high-performance electromechanical materials with output capabilities an order of magnitude above existing solutions, in excess of 500 MPa. This could facilitate the next generation of many consumer and industrial electronic devices.

Applications


  • Wide range of personal electronic devices
  • Industrial and fine electronics – specifically powerful acoustic transducers

Advantages


  • Generate large displacement and large stress simultaneously
  • Sensitive and tunable properties

Technology's Essence


In piezoelectric devices, stress develops due to the deformation of a non-centrosymmetric lattice under the application of an electric field. In commercial electrostrictors, or materials with centrosymmetric lattices and very large dielectric constants, an external electric field distorts the unit cells of the lattice, rendering them locally non-centrosymmetric. In both cases, the electromechanical stress develops due to a small displacement of atoms within each unit cell. Increasing the magnitude of the response would lead to more powerful actuators, and permit a decrease in the operating voltage; therefore, the search for novel mechanisms of electromechanical response in solids remains an important objective for both fundamental and applied science.

We have demonstrated that Gd-doped CeO2, specifically Ce0.8Gd0.2O1.9, can generate stress an order of magnitude greater than the best electromechanically active materials. The large stress develops in response to the rearrangement of cerium-oxygen vacancy pairs and their local environment. This effect is expected to be two-fold; i) an applied electric field results in strain and stress directly, and ii) application of the external electric field affects the elastic modulus of Ce0.8Gd0.2O1.9 by suppressing the chemical strain effect. This is a fundamentally different mechanism than materials currently in use. In this view, Gd-doped CeO2 is representative of a new family of high-performance electromechanical materials.

 

+
  • Prof. Igor Lubomirsky
1615
A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and...

A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.
These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and Suzuki and Heck coupling reactions (Pd coated).
Since catalytic chemical reactions are at the heart of many processes and industries, and efficient catalysis is essential for both economic and environmental reasons, this development of a new catalytic platform bears a potential to influence many diverse markets.

Applications


  • New and efficient Pd-based catalysts for diverse reactions.
  • New and efficient crude oil HDS catalysts.
  • New and efficient wastewater purification catalysts.
  • Production of activated hybrid WS2 nanotubes with new properties.
  • Tailoring catalytic nanotubes with different band gaps adjusted to different activation and catalysis applications.

Advantages


  • Formation of highly active catalytic nanotubes
  • Utilization of the nanotubes' very large surface area
  • Recruiting specific nanotube semiconducting characteristics for special catalysis requirements

Technology's Essence


The invention involves deposition of metal nanoparticles on prepared WS2 nanotubes (INT-WS2) in a two stage process involving Pd-nanocrystallites assisted activation followed by electroless plating.
In this process WS2 nanotubes are synthesized according to known procedures. The nanotubes are then covered by metal nanoparticles in a simple and straightforward procedure resulting with highly active nanotubes which can be utilized as catalysts for various chemical reactions.
This new hybrid technology opens the way to a new family of highly efficient, tunable catalysts; the INTs large surface area, specific band gap design and choice of metal result in an ability to produce unique tailor-made catalysts, applicable to many different industries. 

+
  • Prof. Reshef Tenne
  • Prof. Reshef Tenne
1551
A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals,...

A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals, pharmaceutical and agrochemical industries. In addition, a catalytic carbon-carbon bond formation using non-activated aliphatic nitriles and carbonyl compounds was achieved with the manganese complex. These reactions are conducted under mild and neutral conditions, using low catalyst loading, require no hydrogen acceptors or oxidants, employ no corrosive or toxic reagents and generate no waste. Moreover, manganese is one of the most abundant transition metals on earth crust, making it appealing and biocompatible when considering a system for eventual scale-up and industrial use.

In view of global concerns regarding economy, environment and sustainable energy resources, there is an urgent need for the discovery of new catalytic reactions. These newly developed catalysts address key problems of current traditional synthetic methodologies, both from the economic and the environmental aspects.

Applications


·         Pharmaceuticals

·         Dyes

·         Cosmetics and fragrances

·         Fibers

·         Agrochemicals


Advantages


·         Cost-effective in terms of reagents, reactions conditions (low temperature and pressure) and waste treatment (green reactions).

·         New synthetic pathways that were not possible before, such as the synthesis of amides and imines directly from alcohols and amines, esters synthesis from alcohols and methanol synthesis from CO2 and hydrogen.

·         Broad substrate scope.

·         Excellent yields.


Technology's Essence


Prof. David Milstein’s group has discovered a new mode of action for metal-ligand cooperation, involving aromatization–dearomatization of ligands. Pincer-type, pyridine-based complexes of Mn, Ir, Rh, Ru, Pd, Pt and acridine complexes of Ru have been shown to exhibit such cooperation, leading to facile activation of C-H, C-C, H-H, N-H, O-H bonds, and to novel, environmentally friendly reactions catalyzed by Mn and Ru.

+
  • Prof. David Milstein
1644
Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices. The present innovation is based on...

Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices.

The present innovation is based on Chiral Induced Spin Selectivity (CISS) effect that was established experimentally and theoretically in the last decade, and allows for production of inexpensive, high-density universal memory-on-chip devices, that don’t require the use of permanent magnets.

Applications


·         Inexpensive, high-density universal memory-on-chip devices

·         The technology can be used as superior alternative for both Random Access memory and Flash memory

·         Surface-controlled spintronic devices

·         Logic and data processing


Advantages


·         Up to 70 times more storage on the same physical size

·         Up to 100 times lower energy consumption

·         Si-Compatible

·         High density (can reach Si technology limit)

·         Estimated low cost

·         Overcomes limitations of other magnetic-based memory technologies


Technology's Essence


Ferromagnets can be magnetized either by external magnetic fields or by spin polarized current. However, the current density required for inducing magnetization is extremely high and significantly affects the device’s structure and performance. The newly discovered CISS effect allows for magnetization switching of Ferromagnets, which is induced solely by adsorption of chiral molecules, where much lower current density is sufficient to induce the magnetization reversal. Chiral Memory technology uses the CISS effect for spin selectivity instead of the common ferromagnetic-based spin filters. This allows, in principle, the memory bit to be miniaturized down to a single magnetic nanoparticle or a nano-scale domain. The operation principle of the device relies on the spin-selective transmission of electrons through organic chiral molecules to the ferromagnetic layer of the device, which results in the magnetization of this layer and efficient storing of bits of information. The magnetization switching by local adsorption of chiral molecules eliminates the need for a permanent magnet.

+
  • Prof. Ron Naaman
1448
A method to produce amides in one step without any unwanted by-products, by coupling of alcohols with amines with the liberation of hydrogen gas, catalyzed by unique ruthenium complexes. Amides are widely used in the industry (e.g. nylon, Kevlar) and have widespread importance in biochemical and...

A method to produce amides in one step without any unwanted by-products, by coupling of alcohols with amines with the liberation of hydrogen gas, catalyzed by unique ruthenium complexes.

Amides are widely used in the industry (e.g. nylon, Kevlar) and have widespread importance in biochemical and chemical systems (e.g. proteins). Synthesis of amides is mostly based on activated acid derivatives or rearrangement reactions induced by an acid or base, which often produce toxic chemical waste and involve tedious procedures. Therefore, an efficient synthesis that avoids wasteful use of coupling reagents or corrosive acidic and basic media is highly desirable. The current technology allows for the clean production of amides from amines and alcohols.

Applications


  • Production of amides for various applications (plastic and rubber industry, paper industry, pharmaceutical intermediates, etc.)

  • Use of the liberated hydrogen (e.g. for the production of ammonia)


Advantages


  • Clean and selective procedure

  • Environment friendly reaction (no base or acid promoters are required, no carboxylic acid derivatives, such as acid chlorides, are needed)

  • Amides and molecular hydrogen are produced in high yields and high turnover numbers directly from alcohols in one step

  • The liberated hydrogen can be used for different applications

  • Formation of a variety of amides


Technology's Essence


Amide formation is a fundamental reaction in chemical synthesis. Amides are commonly formed from the reaction of a carboxylic acid derivative with an amine. Instead of using carboxylic acid derivative, in the present invention the amide motif is generated by direct acylation of amines with alcohols. This is possible through the use of a unique catalyst. This method enables the simple and elegant production of amide polymers and industrially important amides.

+
  • Prof. David Milstein
1506
A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products. Constant progress is made in solar and wind alternative energy production. Unfortunately, these...

A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products.

Constant progress is made in solar and wind alternative energy production. Unfortunately, these systems are weather and time-dependent. Additionally, most of the geographic areas best suited for harvesting these resources are remote from population centers. Therefore the need for a reliable method to store and transport renewable energy is clear.

CO can be easily converted into methanol, which is one of the major chemical raw materials and can by itself be used as fuel for diesel engines and the energy source for direct methanol fuel cells (DMFC).

At present no reliable method of CO2 to CO reduction is available. Either using low temperatures which leads to low thermodynamic efficiency (<60%), Requires precious metals for electrodes and results in toxic byproducts, or using high temperatures which Requires pure CO2 input and Produces a mixture of CO2 and CO.

The current technology describes an efficient, flexible, continues method for production of CO at high temperatures (900oC) without any byproducts or toxic materials.

Applications


  • Production of CO from CO2
  • Easy conversion into methanol

Advantages


·         No precious (Pt, Ag, Au, Pd) metals required

·         No hazardous chemicals involved, no pollution

·         Continuous operation is possible

·         One can use flue gas as a source

·         Capture of CO2 from air is possible

·         The system is very compact>20 kW/m3

·         Operation conditions are very flexible

·         The process fits existing infrastructure

·         CO can be easily converted into liquid fuel (CH3OH)


Technology's Essence


The outlined technology overcomes the basic problems of CO production by using molten Li2CO3 as the electrolyte, a Ti container (will not undergo corrosion), Ti cathode (does not catalyze decomposition of CO), and a graphite anode (no chemical reaction with Li2CO3). At 900°C and current density of 0.05-2 A/cm2, this unique system enables a thermodynamic efficiency close to 100%, continues production of CO – efficiently separating CO2 to CO and O2.

+
  • Prof. Igor Lubomirsky
1124
Label-free detection and monitoring of target molecules, which can be conducted using standard lab equipment. This new method of optical analysis is effective in monitoring the binding of chemically or physically adsorbed molecules, in liquid or gas phase, with measurements carried out continuously in...

Label-free detection and monitoring of target molecules, which can be conducted using standard lab equipment. This new method of optical analysis is effective in monitoring the binding of chemically or physically adsorbed molecules, in liquid or gas phase, with measurements carried out continuously in real-time.

SPR and LSPR technologies are broadly used in efficient real-time detection and quantification of biomolecules in research environments; however these technologies are too complicated, cumbersome and expensive for routine applications. This novel technology combines real-time, high sensitivity and accuracy of LSPR with low cost and ease of use of other optical assays, such as ELISA.

The invention comprises the LSPR transducer element of a gold-island film biosensor, which does not suffer shortcomings such as extreme temperature sensitivity. The gold island film is rapidly integrated into lab consumables via a novel fabrication method, which produces a robust system for high-throughput molecular diagnostics.

Applications


  • Point of care, real time diagnostics of chemical and biological substances.
  • Environmental watch: monitoring air or water pollution, testing for food poisoning.
  • Chemical warfare: detection of chemical agents and explosives.
  • Real-time monitoring of marine biofouling or industry corrosion processes.

Advantages


  • Simple operation, versatile and inexpensive method to imbed sensor in standard lab consumables.
  • High-throughput label-free detection with sensitivity comparable to that of SPR.
  • Uses cheap, disposable samples.
  • Can be combined with a variety of biosensing technologies.

Technology's Essence


The method involves evaporation of ultrathin (?10 nm) gold films onto inert transparent substrates (e.g., glass, plastic) leading to the formation of a layer of gold islands. Gold-island films provide unique optical properties. Such films show a localized surface plasmon (LSP) absorption peak much less sensitive to the refractive index of the surrounding medium. The LSP absorption band changes upon binding of various molecules to the surface. The binding process can be followed quantitatively by measuring the changes in the gold SP absorption. Selective sensing using the LSPR method can be achieved by applying a thin layer containing receptor molecules onto the gold island film, and measuring changes in the SP absorption upon binding of a specific analyte to the receptor layer

+
  • Prof. Israel Rubinstein
1512
Materials with unique optical and magnetic properties for preventing counterfeiting. Product counterfeiting is a worldwide problem; the range of counterfeited goods touches almost all industries, from clothing to pharmaceuticals. It is estimated that counterfeiting is a $600 billion a year business,...

Materials with unique optical and magnetic properties for preventing counterfeiting.

Product counterfeiting is a worldwide problem; the range of counterfeited goods touches almost all industries, from clothing to pharmaceuticals. It is estimated that counterfeiting is a $600 billion a year business, and that counterfeit goods currently account for 5-7% of world trade. For this, companies need strategies that include various layers of security. Counterfeiters have learned to duplicate various types of security measures, so it is important to use a combination of overt and covert techniques simultaneously. The present technology consists of complexes and clusters  with a unique combination of optical and magnetic properties, that may be utilized for product authenticity.

Applications


  • Security 'markers' in documents or product authenticity, in the form of special printing inks or ink-jet applications


Advantages


  • Delayed emissions guarantees low noise level from exogenous fluorescent impurities

  • The clusters are emissive both in solution as well as in the solid state

  • Emissive complexes and clusters are circular polarized and therefore provide an additional layer of genuineness, as the true nature of the markers can only be identified using appropriate filters
  • The high magnetic properties of several of the compounds allows fast automated document screening


Technology's Essence


The outlined technology consists of a series of chiral organic ligands, their metal complexes, and several multi-nuclear clusters. Upon excitation, fluorescence emission can be selected to occur in the visible or the invisible near infrared regions of the spectrum. The spectrum is characterized by several well resolved emission maxima. The unique combination of optical and magnetic properties of these materials makes them promising candidates to serve as security 'markers'.

+
  • Prof. Abraham Shanzer
1265
A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale. The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity...

A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale.

The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity of contaminating compounds, and their extreme persistence in the environment, define a complex challenge and serious threat. Feasible technological responses to deal with growing deterioration in water resource quality are difficult to develop, largely because of the wide variety of contaminants having different properties, the stringent environmental standards that must be met, and the inherent heterogeneity of natural aquatic systems. The quest for cost-effective, environmentally-acceptable methods that can target a wide spectrum of contaminants, in situ and ex situ, is urgent and critical today more than ever.

The approach of the technology presented here is to reduce their oxidation state, i.e., to transform them electrochemically. In most cases, complete transformation of contaminants from the oxidized-organic group produces environmentally innocuous compounds, while reduction of heavy metals renders them insoluble and immobile, and therefore much less harmful. These treatment methods can be applied both in situ and ex situ for decontamination of soils, sediments, water, wastewater and gaseous process streams.

Applications


•           Polluted water and wastewater treatment.

•           Soil decontamination.

•           Gaseous process stream treatment.


Advantages


•           Environmentally friendly output.

•           Cost effective.

•           Can be applied in situ as well as ex situ.


Technology's Essence


The treatment method presented here is based on nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix.  Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows

high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours.

 

+
  • Prof. Brian Berkowitz
1394
An efficient method to reduce CO2 concentration. Climate change is one of the most urgent subjects worldwide, with implications affecting the entire population of the planet. One of the major aspects influencing global warming is the emission of greenhouse gases to the atmosphere. Most of the...

An efficient method to reduce CO2 concentration. Climate change is one of the most urgent subjects worldwide, with implications affecting the entire population of the planet. One of the major aspects influencing global warming is the emission of greenhouse gases to the atmosphere. Most of the greenhouse gases emitted due to human activity are related to burning of fossil fuels (e.g., coal, oil, gasoline, natural gas) with the major component being CO2. Furthermore, increased CO2 emissions (due to increased world energy consumption) are expected as the living standard improves in many parts of the world. Consequently, to enable drastic reductions in CO2 emissions it is becoming necessary to capture and sequester CO2. The outlined technology involves a simple precipitation reaction using CO2 to form a stable and inert carbonate compound using that can be stored or discarded.

Applications


  • In situ and ex situ CO2 sequestration, by conversion to carbonate rock
  • In subsurface systems, carbonate precipitation can reduce hydraulic conductivity, thus mitigating movement of saltwater or groundwater contaminants

Advantages


  • Long term stability
  • Vast capacity of field sites
  • Potentially economically viable
  • Potential for treatment of waste air and flue gases
  • May overcome the problem of CO2 escape during or after sequestration

Technology's Essence


This technology consists of a new method for sequestering CO2 in subsurface geological formations, by converting it into a stable mineral form. CO2 in water results in chemical equilibrium with bicarbonate (HCO3-) and carbonic acid (CO32-). This equilibrium is very sensitive to changes in pH, thus under basic conditions equilibrium considerations favor precipitation of HCO3- and CO32- as carbonate minerals, while under acidic conditions there is release of CO2 by dissolution and dissociation of carbonates. The method can also be adapted for above-ground operation.

+
  • Prof. Brian Berkowitz
1482
Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms...

Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms. These nanoparticles combine both superior mechanical properties and high electrical conductivity.

The main market for these kinds of nanoparticles is in thin films that combine superior mechanical and electrical properties. For example, as part of touch screensin addition, polymer nanocomposites containing such nanoparticles can be used among other things in electromagnetic shielding and conductive films for packaging and high performance adhesives. These nanoparticles are expected to reveal interesting catalytic applications, for example to obtain sulfur free gasoline. They can be used in third generation photovoltaic cells, etc.

Applications


  • Catalytic processes for energy storage and sulfur free gasoline.
  • Polymer nanocomposites for packaging
  • Electromagnetic shielding.
  • Conductive glues/adhesives with superior performance.
  • Energy storage.

Advantages


The combination of superior mechanical properties and high electrical conductivity offers new kinds of applications in catalysis; energy storage; high performance nanocomposites and in macroelectronics.

 

+
  • Prof. Reshef Tenne
1102
A new high-yield method for producing aryl alkenes. Catalytic carbon-carbon bond formation by C-H activation is a topic of much current interest. Significant progress has been made in recent years in the development of synthetically useful catalytic addition of arenes to alkenes to give the saturated...

A new high-yield method for producing aryl alkenes. Catalytic carbon-carbon bond formation by C-H activation is a topic of much current interest. Significant progress has been made in recent years in the development of synthetically useful catalytic addition of arenes to alkenes to give the saturated aryl alkenes. Catalytic oxidative coupling to give aryl alkenes, in which the double bond is preserved, is a highly desirable goal. Such a reaction, which does not require the utilization of a reactive substituent and does not produce waste, may have an advantage over other methods for the preparation of aromatic alkenes. While good catalytic activity was achieved with some alkenes, acrylates resulted in low activity. Furthermore, the use of peroxide oxidants and acetic acid solvent in these systems is problematic from the industrial point of view. The present invention consists of a novel oxidative coupling of arenes with alkenes to yield aryl alkenes, in the presence of ruthenium or osmium compounds as catalysts.

Applications


  • Preparation of various aryl alkenes, which are useful intermediates in the chemical, pharmaceutical and agrochemical industries

Advantages


  • There is no need for acid solvent or a peroxide
  • Much lower pressure of CO may be used compared to other methods

Technology's Essence


In the outlined technology it was discovered that aryl alkenes can be produced by reaction of arenes with alkenes in the presence of ruthenium or osmium compounds as catalysts. The reaction can be carried out in the presence of molecular oxygen (O2) as the oxidant. In the absence of O2 the alkene itself serves as the oxidant. For example, reaction of benzene with methyl acrylate and O2 produces methyl cinnamate and water. In the absence of O2 methyl cinnamate and methyl propionate are formed.

+
  • Prof. David Milstein

Pages