You are here

Category
Technology Name
Briefcase
Scientist
1450
An MRI-based Non-invasive real-time depiction of Blood-Brain Barrier (BBB) abnormalities that enables a wide range of diagnostic, therapeutic and drug development applications.The BBB is a capillary barrier that protects the brain from fluctuations in blood chemistry and passage of certain particles...

An MRI-based Non-invasive real-time depiction of Blood-Brain Barrier (BBB) abnormalities that enables a wide range of diagnostic, therapeutic and drug development applications.
The BBB is a capillary barrier that protects the brain from fluctuations in blood chemistry and passage of certain particles between bloodstream and the brain. Selective delivery of compounds across the BBB by means of temporary/local BBB disruption is an emerging field. Therefore, means to monitor the BBB function non-invasively and in real-time are essential.Using existing MRI systems and state-of-the-art analytical tools, the methodology enables dynamic depiction of BBB physiological behavior, providing means to monitor changes in BBB permeability as wells as characterization of CNS pathologies. 

Applications


  • Assessment of CNS disorders – Diagnosis, Staging etc.

  • Monitoring the development of CNS disorders & response to treatment

  • Monitoring the effects of compounds or technologies on the BBB

  • Determine BBB function under certain physiological conditions  

  • Drug development:
    •  Modification of molecules to improve passage through the BBB.
    • Apply for the development of compounds/devices that affect BBB functioning.


Advantages


  • Non-invasive, real-time, 3D depiction of BBB functioning

  • Sensitivity to slight BBB abnormalities, undetected by conventional MRI

  • Acquired in parallel to conventional MRI enabling high resolution anatomical depiction

  • Can be acquired on available conventional clinical/pre-clinical MR systems using conventional data acquisition software


Technology's Essence


A methodology for analyzing the blood-brain barrier’s behavior, based on a detectable standard dose of MRI contrast agent. The methodology uses plurality of MRI images acquired from a subject’s brain over a predetermined time period, in order to asses BBB function in a uniquely sensitive manner. The system offers a combination of a data acquisition protocol and an offline software package, operating as an “add-on” to existing MRI systems. The system compares series of MRI constructed intensity maps, using different metrics to sensitively detect dissimilarities. The output is BBB functioning maps, depicting regions of BBB abnormalities.

+
  • Prof. Talila Volk
  • Dr. David Israeli
1033
A novel diagnostic test to identify individuals with increased risk of lung cancer. Lung cancer is the number one killer among cancers, with 160,000 deaths/year in the USA and 1.6 million/year worldwide. Early detection of lung cancer increases 5-year survival rate from 4% to 54%. Moreover, the...

A novel diagnostic test to identify individuals with increased risk of lung cancer.

Lung cancer is the number one killer among cancers, with 160,000 deaths/year in the USA and 1.6 million/year worldwide. Early detection of lung cancer increases 5-year survival rate from 4% to 54%. Moreover, the National Lung Cancer Trial (NLST) showed that early detection of lung cancer by low-dose CT reduces mortality by at least 20%. Despite recommendations for low-dose CT screening for heavy smokers fulfilling the NLST criteria, compliance is low. In addition, 80 million smokers and ex-smokers in the US who do not fulfil NLST risk criteria have no recommended solution.

The MyRepair test fulfils this unmet medical need by providing a quantitative prediction of lung cancer risk using a simple blood test. The test is based on a personalized measurement of the patient’s DNA repair capacity, a mechanism which is highly connected to the onset of cancer. Therefore, the MyRepair technology can potentially increase early detection of lung cancer and thus save lives.

 

Applications


A novel diagnostic test to identify individuals with increased risk of lung cancer


Advantages


·         Simplicity – MyRepair is based on a simple, cost-effective blood test.

·         Accessibility – Compared to low-dose CT which requires specific equipment, the MyRepair test can be easily integrated in general diagnostic labs and therefore may be more accessible to a larger portion of the population.

·         Additional applications – Since the test is based on measuring personalized DNA repair mechanism, it can be adopted in the future for the diagnosis of additional cancer types and DNA repair related diseases.


Technology's Essence


Based on the strong and well documented connection between impaired capacity for DNA repair and onset of cancer, the Livneh lab invented the MyRepair Test, a method for predicting lung cancer risk, based on measuring activity of 3 DNA repair enzymes.

Combining enzyme activities with experimental risk estimates generated MyRepair Score, which measures personalized DNA repair capacity of tested subjects.

An epidemiological/clinical study performed in Israel, further validated in an independent UK study, demonstrated that lung cancer patients have lower MyRepair Score than healthy people. In addition, subjects who test MyRepair-positive have an 85-fold higher risk to develop lung cancer compared to the general population.

Low MyRepair Score is a risk factor independent of smoking, and of comparable magnitude, indicating that it can be a prognostic tool for smokers, ex-smokers, and non-smokers.

+
  • Prof. Zvi Livneh
1499
Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been...

Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been identified in the urine that might be used for screening, staging, prognosis and monitoring treatment.  We now report that the amount of the 60 kDa heat shock protein (HSP60) in a subject’s urine is a biomarker for muscle invasion in patients with bladder cancer – stage T2 and higher.  Moreover, subjects with stage T1 disease can be stratified by their urine levels of HSP60 into a sub-group likely to progress into stage T2 or into a sub-group more likely to respond to conservative treatment with BCG, which does not require removal of the bladder.  The distinction between these two sub-groups of T1 bladder cancer can identify earlier subjects in need of cystectomy, while sparing others unnecessary major surgery.

Applications


  • Screening subjects with overt hematuria, or at risk of developing bladder cancer (such as heavy smokers)
  • tratifying bladder cancer subjects
  • Prognosis
  • Determining treatment program
  • Monitoring response to therapy.

Advantages


  • Non-invasive
  • Easy to apply
  • Relatively inexpensive
  • Prognositic.

Technology's Essence


Quantitative measurement of HSP60 levels in a subject’s urine by ELISA, radio-immunoassay or other simple assays.

+
  • Prof. Irun R. Cohen
1270
Monoclonal antibodies to IgE Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with...

Monoclonal antibodies to IgE

Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with immunoglobulins of other classes, and recognize an epitope on the murine Fc epsilon region.

Were shown to block IgE-Fc?R interactions and inhibit passive cutaneous anaphylaxis. 

Clone 84.1c recognizes a site on IgE, which is identical or very close to the Fc?R binding site. May be used for detection and manipulation of the IgE response in mice.

Reference:  Schwarzbaum S, Nissim A, Alkalay I, Ghozi MC, Schindler DG, Bergman Y, Eshhar Z. 1989. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions. Eur J Immunol 19(6):1015-23.

 

M182, M185, M186

+
  • Prof. Zelig Eshhar
1655
Cellular senescence is a permanent cell cycle arrest induced by damage or stress applied on proliferating cells. In a cell autonomous manner, senescence is a potent barrier to tumorgenesis and contributes to the cytotoxicity of some anti-cancer drugs. However, with age senescence cells accumulate and...

Cellular senescence is a permanent cell cycle arrest induced by damage or stress applied on proliferating cells. In a cell autonomous manner, senescence is a potent barrier to tumorgenesis and contributes to the cytotoxicity of some anti-cancer drugs. However, with age senescence cells accumulate and promote a number of pathological conditions. Therefore the elimination of senescent cells is desired in order to prevent tumor- and inflammation- related pathologies and also to inhibit tissue ageing.
Today, our understanding of the mechanisms regulating the viability of senescent cells is limited. It has been suggested that senescent cells are resistant to apoptosis. Therefore, senescent cells elimination may be achieved by modifying the resistance to apoptosis of these cells.
Here the researches demonstrate the first feasible therapeutic approach that leads to eradication of senescent cells. Combination of direct induction of apoptosis in senescent cells with induction of cell death by pro-inflammatory repose induce by p21 knockdown will lead to reduction of viable senescent cells.

Applications


  • A therapeutic impact on inflammatory and fibrotic disease
  • Therapy for age-related disease such as type 2 diabetes, Alzheimer’s disease, Atherosclerosis, cataracts, Chronic obstructive pulmonary disease (COPD), and Osteoporosis

Advantages


  • Effective elimination of senescent cells- removal of senescent cells can prevent or delay tissue dysfunction and extend health span
  • Does not damage normal cells even at high concentrations

Technology's Essence


Researches demonstrated that the anti-apoptotic proteins Bcl-xL and Bcl-w level were elevated in senescence cells of both human and mouse origin. A subsequent study, in which Bcl-xL and Bcl-w were knocked down by siRNA, revealed that a combined knock down of Bcl-xL and Bcl-w had synergic effect, resulting in reduction of 50% in cell viability. Thus the increased level of anti-apoptotic proteins Bcl-xL and Bcl-w may account for the apoptotic resistance of senescent cells. p21 knockdown induced pro-inflammatory response and cell death in senescent cells.
Overall, the researchers show that combined inhibition of the anti-apoptotic proteins Bcl-xL and Bcl-w allows specific elimination of senescent cells and might be used to treat diseases where senescent cells are present. The researchers also found that the same effect might be achieved by reducing the expression of p21 in senescent cells. Integrating both approaches propose a more effective therapy.

+
  • Ph.D. Valery Krizhanovsky
1698
GD is an inherited metabolic disorder, affecting about 1 in 20,000 births. GD is divided into three clinical subtypes: type 1 is the most common and is characterized by bruising, fatigue, anemia, low blood platelets, and enlargement of the liver and spleen. Types 2 and 3, also called neuronopathic GD (...

GD is an inherited metabolic disorder, affecting about 1 in 20,000 births. GD is divided into three clinical subtypes: type 1 is the most common and is characterized by bruising, fatigue, anemia, low blood platelets, and enlargement of the liver and spleen. Types 2 and 3, also called neuronopathic GD (nGD), affect 4% of GD patients and additionally include neurological symptoms. Type 1 patients can have a normal life expectancy if treated whereas type 2/3 patients do not survive to reach adulthood. Moreover, GD carriers, approximately 1% of the population, are in a major risk of developing Parkinson’s disease. Current therapies suffer from severe drawbacks in the treatment of type 1 GD and no therapy exists that effectively treat nGD. The present technology offers a novel therapeutic target for the treatment of Gaucher's disease (GD) which addresses also the neurological symptoms.

Applications


  • Alternative treatment for type 1 GD
  • First line therapy for nGD

Advantages


  • A novel therapy for nGD which has no treatment for the present.
  • A novel therapeutic approach for GD type 1, via a previously unknown molecular mechanism.
  • Allows the development of an orally administered treatment, far more convenient for the patients than the existing treatments.
  • Reduced costs compared to the existing therapies of ERP or BMT

Technology's Essence


The proposed technology is based on the discovery that RIP3 is a key player in the manifestation of GD and that inhibiting RIP3 activity is effectively ameliorating the symptoms of GD not only in the less severe type 1 but also in the neuropathic form of the disease, types 2 and 3. nGD is associated with a massive neuronal loss and elevated RIP3 levels. Inhibition of RIP3 in a mouse model of nGD resulted in a dramatic attenuation of disease signs: drastic extension of life span, no weight loss, improvements in motor coordination, reduced neuroinflammation and improved liver and spleen injuries.

+
  • Prof. Anthony H. Futerman

Pages