You are here

Category
Technology Name
Briefcase
Scientist
1499
Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been...

Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been identified in the urine that might be used for screening, staging, prognosis and monitoring treatment.  We now report that the amount of the 60 kDa heat shock protein (HSP60) in a subject’s urine is a biomarker for muscle invasion in patients with bladder cancer – stage T2 and higher.  Moreover, subjects with stage T1 disease can be stratified by their urine levels of HSP60 into a sub-group likely to progress into stage T2 or into a sub-group more likely to respond to conservative treatment with BCG, which does not require removal of the bladder.  The distinction between these two sub-groups of T1 bladder cancer can identify earlier subjects in need of cystectomy, while sparing others unnecessary major surgery.

Applications


  • Screening subjects with overt hematuria, or at risk of developing bladder cancer (such as heavy smokers)
  • tratifying bladder cancer subjects
  • Prognosis
  • Determining treatment program
  • Monitoring response to therapy.

Advantages


  • Non-invasive
  • Easy to apply
  • Relatively inexpensive
  • Prognositic.

Technology's Essence


Quantitative measurement of HSP60 levels in a subject’s urine by ELISA, radio-immunoassay or other simple assays.

+
  • Prof. Irun R. Cohen
1270
Monoclonal antibodies to IgE Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with...

Monoclonal antibodies to IgE

Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with immunoglobulins of other classes, and recognize an epitope on the murine Fc epsilon region.

Were shown to block IgE-Fc?R interactions and inhibit passive cutaneous anaphylaxis. 

Clone 84.1c recognizes a site on IgE, which is identical or very close to the Fc?R binding site. May be used for detection and manipulation of the IgE response in mice.

Reference:  Schwarzbaum S, Nissim A, Alkalay I, Ghozi MC, Schindler DG, Bergman Y, Eshhar Z. 1989. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions. Eur J Immunol 19(6):1015-23.

 

M182, M185, M186

+
  • Prof. Zelig Eshhar
1527
New peptides for improving the recruitment of stem cells for transplantation. Blood cancers (leukemia, lymphoma and myeloma) are very common: they accounted for nearly 9.5 percent of deaths in the US from cancer in 2009. Stem cell transplantation, which aims to restore the function of the marrow, is an...

New peptides for improving the recruitment of stem cells for transplantation.

Blood cancers (leukemia, lymphoma and myeloma) are very common: they accounted for nearly 9.5 percent of deaths in the US from cancer in 2009. Stem cell transplantation, which aims to restore the function of the marrow, is an important therapy for these malignancies. Successful blood and marrow transplant requires the infusion of a sufficient number of hematopoietic stem and progenitor cells (HSPC), which is done by recruitment of HSPC from the marrow into the blood (mobilization). Currently used clinical procedures to produce stem cell mobilization include administration of G-CSF or GM-CSF, either as single agents or in combination with chemotherapy. However, some autologous blood stem cell donors exhibit indifference to currently applied mobilization therapies. Hence, improved methods to mobilize peripheral blood HSPC are warranted. The present invention is directed to novel short peptides of beta-defensins for improving the mobilization of HSPC.

Applications


  • Rapid and efficient mobilization of HSPC for clinical transplantation
  • Inhibition of malignant cell proliferation and metastasis

Advantages


·         Non-toxic, derived from a physiological molecule of innate host immunity

·         Cheap and simple synthesis

·         Rapid, robust and preferential mobilization of immature HSPC

·         Enhancement of mobilizing efficiency of presently used substances (e.g. G-CSF)

·         Dual use of the derivatives


Technology's Essence


Beta-defensins belong to a family of antimicrobial peptides, a major component of the innate immune system. In a mouse model, two different linear beta-defensin-derived peptides provided a strong and rapid HSPC mobilization, alone and in combination with G-CSF, a cytokine that is the major agent inducing robust mobilization of HSPC. In addition, a cyclic peptide derivative effectively inhibited HSPC mobilization and proliferation, as well as human malignant cell motility in mice. These findings make beta-defensin-derived peptides as promising small molecule candidates for improving current clinical HSPC mobilization protocols, and their cyclic derivatives as promising candidates for reducing cancer cell development and metastasis in patients.

+
  • Prof. Tsvee Lapidot
1397
A novel antibody which can be used, for the first time, to recognize ubiquitinated histone 2B. This technology is novel in its ability to recognize proteins and their destinations, and may serve in diagnostics and immunoprecipitation processes.

A novel antibody which can be used, for the first time, to recognize ubiquitinated histone 2B. This technology is novel in its ability to recognize proteins and their destinations, and may serve in diagnostics and immunoprecipitation processes.

Applications


Primary applications in research. Use as a detection tool in western blotting, immunoprecipitation and chromatin immunoprecipitation. Might be used for monitoring processes associated with modulations of ubiquitinated-H2B levels.

Technology's Essence


The invention involves the generation of antibodies specific to ubiquitinated-H2B which selectively recognize H2B when it is ubiquitinated but not H2B in its unmodified state, or ubiquitin unconjugated to H2B.

+
  • Prof. Moshe Oren
1655
Cellular senescence is a permanent cell cycle arrest induced by damage or stress applied on proliferating cells. In a cell autonomous manner, senescence is a potent barrier to tumorgenesis and contributes to the cytotoxicity of some anti-cancer drugs. However, with age senescence cells accumulate and...

Cellular senescence is a permanent cell cycle arrest induced by damage or stress applied on proliferating cells. In a cell autonomous manner, senescence is a potent barrier to tumorgenesis and contributes to the cytotoxicity of some anti-cancer drugs. However, with age senescence cells accumulate and promote a number of pathological conditions. Therefore the elimination of senescent cells is desired in order to prevent tumor- and inflammation- related pathologies and also to inhibit tissue ageing.
Today, our understanding of the mechanisms regulating the viability of senescent cells is limited. It has been suggested that senescent cells are resistant to apoptosis. Therefore, senescent cells elimination may be achieved by modifying the resistance to apoptosis of these cells.
Here the researches demonstrate the first feasible therapeutic approach that leads to eradication of senescent cells. Combination of direct induction of apoptosis in senescent cells with induction of cell death by pro-inflammatory repose induce by p21 knockdown will lead to reduction of viable senescent cells.

Applications


  • A therapeutic impact on inflammatory and fibrotic disease
  • Therapy for age-related disease such as type 2 diabetes, Alzheimer’s disease, Atherosclerosis, cataracts, Chronic obstructive pulmonary disease (COPD), and Osteoporosis

Advantages


  • Effective elimination of senescent cells- removal of senescent cells can prevent or delay tissue dysfunction and extend health span
  • Does not damage normal cells even at high concentrations

Technology's Essence


Researches demonstrated that the anti-apoptotic proteins Bcl-xL and Bcl-w level were elevated in senescence cells of both human and mouse origin. A subsequent study, in which Bcl-xL and Bcl-w were knocked down by siRNA, revealed that a combined knock down of Bcl-xL and Bcl-w had synergic effect, resulting in reduction of 50% in cell viability. Thus the increased level of anti-apoptotic proteins Bcl-xL and Bcl-w may account for the apoptotic resistance of senescent cells. p21 knockdown induced pro-inflammatory response and cell death in senescent cells.
Overall, the researchers show that combined inhibition of the anti-apoptotic proteins Bcl-xL and Bcl-w allows specific elimination of senescent cells and might be used to treat diseases where senescent cells are present. The researchers also found that the same effect might be achieved by reducing the expression of p21 in senescent cells. Integrating both approaches propose a more effective therapy.

+
  • Ph.D. Valery Krizhanovsky
1698
GD is an inherited metabolic disorder, affecting about 1 in 20,000 births. GD is divided into three clinical subtypes: type 1 is the most common and is characterized by bruising, fatigue, anemia, low blood platelets, and enlargement of the liver and spleen. Types 2 and 3, also called neuronopathic GD (...

GD is an inherited metabolic disorder, affecting about 1 in 20,000 births. GD is divided into three clinical subtypes: type 1 is the most common and is characterized by bruising, fatigue, anemia, low blood platelets, and enlargement of the liver and spleen. Types 2 and 3, also called neuronopathic GD (nGD), affect 4% of GD patients and additionally include neurological symptoms. Type 1 patients can have a normal life expectancy if treated whereas type 2/3 patients do not survive to reach adulthood. Moreover, GD carriers, approximately 1% of the population, are in a major risk of developing Parkinson’s disease. Current therapies suffer from severe drawbacks in the treatment of type 1 GD and no therapy exists that effectively treat nGD. The present technology offers a novel therapeutic target for the treatment of Gaucher's disease (GD) which addresses also the neurological symptoms.

Applications


  • Alternative treatment for type 1 GD
  • First line therapy for nGD

Advantages


  • A novel therapy for nGD which has no treatment for the present.
  • A novel therapeutic approach for GD type 1, via a previously unknown molecular mechanism.
  • Allows the development of an orally administered treatment, far more convenient for the patients than the existing treatments.
  • Reduced costs compared to the existing therapies of ERP or BMT

Technology's Essence


The proposed technology is based on the discovery that RIP3 is a key player in the manifestation of GD and that inhibiting RIP3 activity is effectively ameliorating the symptoms of GD not only in the less severe type 1 but also in the neuropathic form of the disease, types 2 and 3. nGD is associated with a massive neuronal loss and elevated RIP3 levels. Inhibition of RIP3 in a mouse model of nGD resulted in a dramatic attenuation of disease signs: drastic extension of life span, no weight loss, improvements in motor coordination, reduced neuroinflammation and improved liver and spleen injuries.

+
  • Prof. Anthony H. Futerman

Pages