You are here

Category
Technology Name
Briefcase
Scientist
1640
Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The...

Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The present invention provides highly selective targeted therapy against MMP-7, which is strongly associated with aspects of cancer development such as angiogenesis and metastasis.
The innovative concept leading to this high selectivity is immunization with both a synthetic metal-protein mimicry molecule, previously developed by the present inventors, followed by the metalloenzyme itself (e.g. MMP-7). The resulting antibody exhibits exceptional degree of specificity towards MMP-7 over other MMPs.
The present technology offers an opportunity to re-introduce improved MMP-targeting agents to the cancer therapeutics market, in particular aggressive cancers that face a major unmet medical need. 

Applications


  • Therapy for MMP-7 associated diseases
  • Diagnostic tool for MMP-7 associated diseases

Advantages


  • Highly selective
  • Safe – avoids adverse effects that are associated with broad spectrum MMP inhibitors.
  • Efficient – targeting a physiological active conformation of the enzyme

Technology's Essence


The present technology is based on a previous invention that was developed in Prof. Sagi's lab, of synthetic metal-protein mimicry molecules that mimic the conserved structure of the metalloenzyme catalytic zinc-histidine complex within the active site of each MMP enzyme.
These molecules were shown to be powerful immunogens in the generation of highly selective MMP antibodies since they recognize both electrical and structural determinants residing within the enzyme active site. The potential of this method to successfully generate MMP-targeting therapeutics was shown for MMP-9/2 inhibitory antibodies in mouse models of inflammatory bowel disease.
Prof Sagi and her team now take this invention a step further to achieve even higher specificity. They show that immunizing with the mimicking molecules described above, followed by immunization with the metalloenzyme itself increases selectivity further.   
Implemented for MMP-7-targeting, this approach yielded an antibody with a 5 fold lower Ki towards MMP-7 than towards other MMPs (e.g. MMp-2 and MMP-9).


 

+
  • Prof. Irit Sagi
  • Prof. Irit Sagi
1569
Liposomes are vesicles formed by natural lipids commonly named phospholipids. Phospholipids contain the phosphocholine head group which has great impact on their characteristics. In general the use of natural lipids provides biocompatibility; liposomes are frequently used as drug delivery agents, and...

Liposomes are vesicles formed by natural lipids commonly named phospholipids. Phospholipids contain the phosphocholine head group which has great impact on their characteristics. In general the use of natural lipids provides biocompatibility; liposomes are frequently used as drug delivery agents, and we now propose to use them for bio-lubrication purposes. Our phosphatidylcholine liposomes, which are in their more rigid gel phase, form close-packed boundary layers in a hydrated environment. This leads to a striking reduction of the friction coefficient at high pressures because the uniform close-packed arrangement of these liposomes creates a particularly robust layer. These characteristics make these liposomes excellent candidates for use as boundary lubricant materials.

Applications


Bio-lubricant materials for:

  • Medical applications such as reduction of skinsoreness from rubbing and suppression of plaque formation, and in biomedical devices including catheters
  • Cosmetic applications such as use in conditioners and shampoos
  • Friction reducers in synovial joints where osteoarthritis-related problems arise

Advantages


  • Rapid and simple liposome preparation procedure
  • Strong decrease of friction coefficient at physiological pressures
  • Material robustness and stability

Technology's Essence


Our phosphatidylcholine liposomes spontaneously adsorb and self-assemble onto a solid surface in aqueous solution to form a robust boundary layer which provides extremely efficient lubrication at the interfaces. The lubrication occurs under pressures of up to 100 atmospheres or more. These characteristics are preserved up to the gel-to-liquid-crystalline phase transition temperature (Tm= 53ºC for the HSPC liposomes for example). The lipids head groups which are highly hydrated and exposed at the outer liposome surfaces provide these remarkable properties by virtue of the hydration lubrication mechanism.

+
  • Prof. Jacob Klein
1601
A potent combination therapy against non-invasive breast cancer Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25...

A potent combination therapy against non-invasive breast cancer

Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25% of breast cancers that are diagnosed in the US are DCIS. DCIS is commonly treated by surgical intervention followed by adjuvant radiation therapy. However, a significant fraction of the DCIS lesions, which display HER2 gene amplification, are associated with increased relapse rate following surgery. Therefore, in cases of HER2-overexpressing DCIS a molecularly targeted therapy might be necessary for complete eradication of microscopic remnants following surgical tumor removal. The current technology presents an potential DCIS therapeutic strategy that collectively targets the functionally linked HER2 and Notch pathways.

 

Applications


  • Combination therapy for DCIS patients following surgical tumor removal.
  • Classification of DCIS patients according to HER2 Notch activation patterns to identify patients with increased risk of relapse after surgery.
  • Diagnostic antibodies to NRG4 to screen for cancer cell subtypes that express/over-express NRG4.
  • NRG4 fusion conjugates, where NRG4 acts as a vehicle to direct the conjugate to cells specifically expressing the receptor ErbB4.

 


Advantages


  • Targeted cancer therapies will give doctors a better way to tailor cancer treatment.
  • Targeted cancer therapies hold the promise of being more selective, thus harming fewer normal cells, reducing side effects, and improving the quality of life.
  • The proposed treatment strategy may prove beneficial in DCIS patients with poor prognosis.

 


Technology's Essence


The HER2/Neu oncogene, a member of the HER/ErbB signaling network, encodes a receptor-like tyrosine kinase, whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. Pre-invasive lesions, such as DCIS, overexpress HER2 at higher frequency than invasive ones. Another signal transduction pathway critical for breast cancer progression comprises Notch family receptors and their membrane-bound ligands. In the current technology, a team of researchers from the Weizmann Institute of Science uncovered that overexpression of HER2 in a novel experimental model of DCIS leads to transcriptional upregulation of Notch pathway components, resulting in enhanced tumor cell survival and proliferation. Combined treatment with HER2 and Notch pathway inhibitors resulted in decreased proliferative and tumorigenic potential. The current technology offers specific and combined targeting of HER2 and Notch pathways for DCIS treatment. This approach may also be tailored for DCIS patients with enhanced co-expression of HER2 and Notch.

+
  • Prof. Yosef Yarden
1536
Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.   Cellulosic biomass...

Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.

 

Cellulosic biomass pretreated (e.g. with acid) under ideal conditions, still requires very high enzyme doses to provide efficient bioconversion.

The cost of enzymes and pretreatment is a major hurdle in the production of low-cost cellulosic biofuel, competitive with that of fossil fuels or ethanol produced from corn or sugarcane.

 

The complex structure of cellulosic materials is built to resist bacterial hydrolytic enzymes. The cooperation of many types of carbohydrate-active enzymes is required for effective degradation. By designing synthetic cellulosomes, researchers at The Weizmann Institute enhance synergy between carbohydrate-active enzymes to achieve remarkable degradation rates. Their discoveries can lead to highly efficient conversion of cellulosic biomass, and thus have a major impact in the field of food production and sustainable energy.

Applications


  • High-yield, cost-effective conversion of plant cell wall biomass into soluble sugars for the food industry and the production of biofuels and biochemicals.

Advantages


  • Bio-engineered cellulosomes exhibit synergistic degradation activity of natural substrates compared to the combined action of the free wild-type enzymes.

Technology's Essence


The invention involves the conversion of enzymes (cellulases and xylanases) from the free mode to the cellulosmal mode by attachment using a recombinant dockerin molecule. The dockerin-bearing enzymes are incorporated into designer cellulosomes by interacting with a matching cohesion-containing chimeric scaffoldin (scaffoldin subunits contain the cohesin modules that incorporate the enzymes into the cellulosome complex via their resident dockerins). This approach has generated over two fold enhancement of synergistic hydrolysis on plant cell wall cellulosic biomass. These results create new possibilities for designing superior enzyme compositions for degradation of complex polysaccharides into simple soluble sugars.

+
  • Prof. Edward A. Bayer
1381

Applications


The new method for detecting irregularities has many applications which include:

  1. Detecting suspicious and/or salient behaviors in video
  2. Attention and saliency in images
  3. Detecting irregular tissue in medical images
  4. Automatic visual inspection for quality assurance (e.g., detecting defects in goods)
  5. Generating a video summary/synopsis
  6. Intelligent fast forward
  7. Non-visual data

    Technology's Essence


    Researchers at the Weizmann Institute have developed a new method for detecting irregularities based only on few regular examples, without any assumed models. In the new method the validity of data is determined as a process of constructing a puzzle: one tries to compose a new observed image region or a new video segment (''the query'') using chunks of data (''pieces of puzzle'') extracted from previous visual examples (''the database''). Regions in the observed data which can be composed using large contiguous chunks of data from the database are considered very likely, whereas regions in the observed data which cannot be composed from the database (or can be composed, but only using small fragmented pieces) are regarded as unlikely/suspicious. The problem is posed as an inference process in a probabilistic graphical model. The invention also includes an efficient algorithm for detecting irregularities. Moreover, the same method can also be used for detecting irregularities/anomalies within data without any prior examples, by learning the notion of regularity/irregularity directly from the query data itself.

    Click here to see additional features

+
  • Prof. Michal Irani
1482
Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms...

Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms. These nanoparticles combine both superior mechanical properties and high electrical conductivity.

The main market for these kinds of nanoparticles is in thin films that combine superior mechanical and electrical properties. For example, as part of touch screensin addition, polymer nanocomposites containing such nanoparticles can be used among other things in electromagnetic shielding and conductive films for packaging and high performance adhesives. These nanoparticles are expected to reveal interesting catalytic applications, for example to obtain sulfur free gasoline. They can be used in third generation photovoltaic cells, etc.

Applications


  • Catalytic processes for energy storage and sulfur free gasoline.
  • Polymer nanocomposites for packaging
  • Electromagnetic shielding.
  • Conductive glues/adhesives with superior performance.
  • Energy storage.

Advantages


The combination of superior mechanical properties and high electrical conductivity offers new kinds of applications in catalysis; energy storage; high performance nanocomposites and in macroelectronics.

 

+
  • Prof. Tenne Reshef
1250
A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is...

A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is refined, until the full pattern is reached.

Applications


These methods for motion-based segmentation may be used in a multitude of applications that need to correctly identify meaningful regions in image sequences and compute their motion. Such applications include:

  1. Surveillance and homeland security - detecting changes, activities, objects.
  2. Medical Imaging - imaging of dynamic tissues.
  3. Quality control in manufacturing, and more.

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a multiscale, motion-based segmentation method which, unlike previous methods, uses the inherent multiple scales of information in images. The method begins by measuring local optical flow at every picture elements (pixels). Then, using algebraic multigrid (AMG) techniques, it assembles together adjacent pixels which are similar in either their motion or intensity values into small aggregates - each pixel being allowed to belong to different aggregates with different weights. These aggregates in turn are assembled into larger aggregates, then still larger, etc., yielding eventually full segments.

As the aggregation process proceeds, the estimation of the motion of each aggregate is refined and ambiguities are resolved. In addition, an adaptive motion model is used to describe the motion of an aggregate, depending on the amount of flow information that is available within each aggregate. In particular, a translation model is used to describe the motion of pixels and small aggregates, switch to an affine model to describe the motion of intermediate sized aggregates, and finally turn to a perspective model to describe aggregates at the coarsest levels of scale. In addition to this, methods for identifying correspondences between aggregates in different images are also being developed. These methods are suitable for image sequences separated by fairly large motion.

+
  • Prof. Ronen Ezra Basri
1397
A novel antibody which can be used, for the first time, to recognize ubiquitinated histone 2B. This technology is novel in its ability to recognize proteins and their destinations, and may serve in diagnostics and immunoprecipitation processes.

A novel antibody which can be used, for the first time, to recognize ubiquitinated histone 2B. This technology is novel in its ability to recognize proteins and their destinations, and may serve in diagnostics and immunoprecipitation processes.

Applications


Primary applications in research. Use as a detection tool in western blotting, immunoprecipitation and chromatin immunoprecipitation. Might be used for monitoring processes associated with modulations of ubiquitinated-H2B levels.

Technology's Essence


The invention involves the generation of antibodies specific to ubiquitinated-H2B which selectively recognize H2B when it is ubiquitinated but not H2B in its unmodified state, or ubiquitin unconjugated to H2B.

+
  • Prof. Moshe Oren
1506
A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products. Constant progress is made in solar and wind alternative energy production. Unfortunately, these...

A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products.

Constant progress is made in solar and wind alternative energy production. Unfortunately, these systems are weather and time-dependent. Additionally, most of the geographic areas best suited for harvesting these resources are remote from population centers. Therefore the need for a reliable method to store and transport renewable energy is clear.

CO can be easily converted into methanol, which is one of the major chemical raw materials and can by itself be used as fuel for diesel engines and the energy source for direct methanol fuel cells (DMFC).

At present no reliable method of CO2 to CO reduction is available. Either using low temperatures which leads to low thermodynamic efficiency (<60%), Requires precious metals for electrodes and results in toxic byproducts, or using high temperatures which Requires pure CO2 input and Produces a mixture of CO2 and CO.

The current technology describes an efficient, flexible, continues method for production of CO at high temperatures (900oC) without any byproducts or toxic materials.

Applications


  • Production of CO from CO2
  • Easy conversion into methanol

Advantages


·         No precious (Pt, Ag, Au, Pd) metals required

·         No hazardous chemicals involved, no pollution

·         Continuous operation is possible

·         One can use flue gas as a source

·         Capture of CO2 from air is possible

·         The system is very compact>20 kW/m3

·         Operation conditions are very flexible

·         The process fits existing infrastructure

·         CO can be easily converted into liquid fuel (CH3OH)


Technology's Essence


The outlined technology overcomes the basic problems of CO production by using molten Li2CO3 as the electrolyte, a Ti container (will not undergo corrosion), Ti cathode (does not catalyze decomposition of CO), and a graphite anode (no chemical reaction with Li2CO3). At 900°C and current density of 0.05-2 A/cm2, this unique system enables a thermodynamic efficiency close to 100%, continues production of CO – efficiently separating CO2 to CO and O2.

+
  • Prof. Igor Lubomirsky
1265
A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale. The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity...

A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale.

The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity of contaminating compounds, and their extreme persistence in the environment, define a complex challenge and serious threat. Feasible technological responses to deal with growing deterioration in water resource quality are difficult to develop, largely because of the wide variety of contaminants having different properties, the stringent environmental standards that must be met, and the inherent heterogeneity of natural aquatic systems. The quest for cost-effective, environmentally-acceptable methods that can target a wide spectrum of contaminants, in situ and ex situ, is urgent and critical today more than ever.

The approach of the technology presented here is to reduce their oxidation state, i.e., to transform them electrochemically. In most cases, complete transformation of contaminants from the oxidized-organic group produces environmentally innocuous compounds, while reduction of heavy metals renders them insoluble and immobile, and therefore much less harmful. These treatment methods can be applied both in situ and ex situ for decontamination of soils, sediments, water, wastewater and gaseous process streams.

Applications


•           Polluted water and wastewater treatment.

•           Soil decontamination.

•           Gaseous process stream treatment.


Advantages


•           Environmentally friendly output.

•           Cost effective.

•           Can be applied in situ as well as ex situ.


Technology's Essence


The treatment method presented here is based on nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix.  Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows

high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours.

 

+
  • Prof. Brian Berkowitz
1021
A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

Applications


Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

Technology's Essence


A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

+
  • Prof. Zvi Kam
1447
A cheap and effective solution for protecting RFID tags from power attacks. RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in...

A cheap and effective solution for protecting RFID tags from power attacks.

RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in 2009. RFID tags were believed to be immune to power analysis attacks since they have no direct connection to an external power supply. However, recent research has shown that they are vulnerable to such attacks, since it is possible to measure their power consumption without actually needing either tag or reader to be physically touched by the attacker. Furthermore, this attack may be carried out even if no data is being transmitted between the tag and the attacker, making the attack very hard to detect. The current invention overcomes these problems by a slight modification of the tag's electronic system, so that it will not be vulnerable to power analysis.

Applications


  • Improved security of RFID tags.

Advantages


  • Simple and cost-effective
  • The design involves changes only to the RF front-end of the tag, making it the quickest to roll-out


Technology's Essence


An RFID system consists of a high-powered reader communicating with a tag using a wireless medium. The reader generates a powerful electromagnetic field around itself and the tag responds to this field. In passive systems, placing a tag inside the reader's field also provides it with the power it needs to operate. According to the inventive concept, the power consumption of the computational element is detached from the power supply of the tag. Thus, the present invention can almost eliminate the power consumption information.

+
  • Prof. Adi Shamir
1518
Improved immunotherapy for breast cancer. Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of...

Improved immunotherapy for breast cancer.

Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of therapeutic mAbs and the evolution of patient resistance call for improvements. Furthermore, the response to the clinically approved monotherapy of Herceptin (a humanized mAb directed against ErbB-2), is relatively low (~15%) and short lived (median duration, 9 months). Therefore, there is a need to improve the therapeutic treatment against this receptor. The present technology enhances the therapeutic activity of anti-ErB-2 receptor antibodies, by combining two or more epitope-distinct antibodies.

Applications


  • Improved treatment of ErbB-2-overexpressing tumors (e.g. in breast and ovary cancers).


Advantages


  • May enhance patient response and delay acquisition of resistance.
  • Enhancement of therapeutic efficacy and synergy with chemotherapy.

Technology's Essence


Optimal selection of mAbs for cancer immunotherapy may improve its therapeutic potential. The outlined technology addresses an emerging strategy, which enhances the therapeutic activity of anti-receptor antibodies by combining two mAbs engaging distinct epitopes. It was demonstrated that pairs of anti-ErbB-2 mAbs better inhibit ErbB-2-overexpressing tumors than the respective individual mAbs, both in vitro and in vivo.

+
  • Prof. Yosef Yarden
1267
Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains...

Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. 
Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains in different cell membranes. 
Reference:  Scheffer L, Futerman AH, Addadi L. 2007. Antibody labeling of cholesterol/ceramide ordered domains in cell membranes. Chembiochem 8(18):2286-94.

M263, M264, M265

+
  • Prof. Lia Addadi
1121
A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to...

A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to allow extraction of common image properties, i.e., when there is no sufficient similarity (e.g., gray-level, frequencies, statistical) between the two images. Whereas two individual images cannot be aligned when there is no spatial overlap between them, this is not the case when dealing with image sequences. The outlined technology consists of fusion and alignment of discrete, non-overlapping moving images from different sources, by aligning spatio-temporal changes in each sequence rather than in each image.

Applications


  • Multi-sensor image alignment for multi-sensor fusion
  • Alignment of images (sequences) obtained at significantly different zooms (can be useful in surveillance applications)
  • Generation of wide-screen movies from multiple non-overlapping narrow field-of-view movies (such as in IMAX movies) 
  • Alignment and integration of information across video sequences to exceed the physical visual limitations of any individual sensor (e.g., dynamic range, spectral range, spatial resolution, temporal resolution, etc). ~

Advantages


  • Useful for spatially non-overlapping sequences
  • Useful in cases which are inherently difficult for standard image alignment techniques, such as when there is insufficient common spatial information across the two sequences

Technology's Essence


An image sequence contains much more information than any individual image frame does. In particular, temporal changes in a video sequence (e.g., due to camera motion) do not appear in any individual image frame, but are encoded between video frames. When these temporal changes are common to the two sequences, then these sequences can be aligned both in time and in space, even if there is no common spatial information whatsoever. The need for coherent visual appearance, which is a fundamental assumption in image alignment methods, is replaced in this invention with the requirement of coherent temporal behavior. This can be achieved by attaching the two video cameras closely to each other (so that their centers of projections are very close), and moving them jointly in space (e.g., such as when the two cameras are mounted on a moving platform or rig).

 

Click here for additional information
Click here to visit Prof. Irani`s Homepage

+
  • Prof. Michal Irani

Pages