You are here

Category
Technology Name
Briefcase
Scientist
1662
Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and...

Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and cancerous cells. Also, the therapeutic role of the immune system is an essential element in the healing process due to bone marrow transplantation for hematologic malignancies.
However, a more efficacious and less toxic T cells based treatment is required. Effective therapy depends on the functional avidity between T cell receptors (TCRs) and peptide-MHC complex (pMHC). However the natural affinity of TCR is low and they do not naturally undergo the processes that improve antibody affinity, such as somatic hypermutation (SHM). Currently there is no method of increasing the affinity of a TCR to its ligand. Moreover there is no knowledge on how use affinity maturated TCRs for creating anti-tumor reactive cells
This technology presents a method of increasing the affinity of a TCR to its ligand. This is done by subjecting TCR genes to SHM via the enzyme Activation Induced cytidine Deaminase (AID). The technology further provides affinity maturated TCRs (in cell- bound or in soluble form) and their pharmaceutical potential for immunotherapy. 

Applications


  • Generating anti-tumor T cells
  • Generating T cells reactive against selected antigen

Advantages


  • Rapid
  • Effective

Technology's Essence


This novel technology reveals that the affinity of a TCR to its ligand may be increased remarkably by subjecting TCR genes to SHM, directed by AID.
First a nucleic acid construct encoding a TCR gene is expressed in a host cell. Next SHM is used to introduce mutations to the TCR gene. Last, the the cells will be analyzed for affinity maturation by tetramer staining and subsequently sorted by FACS.
There are three parallel approaches to perform affinity maturation for the TCR: (1) Ex-vivo affinity maturation system, using Tet-regulated expression of AID (2) Ex-vivo affinity maturation system, using controlled expression of AID by mRNA electrophoresis (3) In-vitro affinity maturation system, using extracts from cells that are in SHM and recombinant AID.

+
  • Prof. Rachel Lea Eisenbach
1556
Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars. Modern...

Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars.

Modern agriculture faces limited arable land and climate changes. Carbon fixation under these conditions will become a significant growth limiting factor. The proposed solution provides the ability to enhance crop yields using the same expanse of land.

The novel technology presents alternative synthetic carbon fixation pathways that were discovered by harnessing a systems biology approach. These pathways are predicted to harbor a significant kinetic advantage over their natural counter parts, making them promising candidates for synthetic biology implementation.

Applications


  • Synthetic organisms utilizing this revolutionary technology can offer higher carbon fixation rates as compared to natural alternatives allowing:
  • Superior rate of biomass generation, providing cost effective feedstock for the production of biofuels.
  • Enhanced food production via increased crop yields.

Advantages


  • Minimal thermodynamic bottlenecks and superior kinetics over natural counterparts.

Technology's Essence


The productivity of carbon fixation cycles is limited by the slow rate and lack of substrate specificity of the carboxylating enzyme, RuBisCo. In his discovery Dr. Milo addresses the inefficiency of the carbon fixation process through an alternative cycle that is predicted to be two to three times faster than the Calvin–Benson cycle, employing the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle.

A computational strategy was applied, comparing kinetics, energetic and topology of all the possible pathways that can be assembled from all ~4,000 metabolic enzymes known in nature.

The results suggest a promising new family of synthetic carbon fixation pathways.

+
  • Prof. Ron Milo
1628
New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and...

New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). However, current treatments of such conditions include general anti-inflammatory and immunosuppressive drugs that are of limited effectiveness and may cause serious side effects. Another class of drugs includes targeted therapies directed against TNF-?, that are associated with serious infections including tuberculosis (TB) and sepsis as well as increased risk of cancer in some cases. Thus, there is an urgent need for highly selective, safer and more effective drugs for inflammatory conditions that involve TNF-? as a key mediator. The present technology introduces a novel generation of candidate drugs that selectively inhibit the processing of TNF-?, thereby preventing it from exerting its pro-inflammatory properties. This technology provides a framework for the development of safer and more effective therapeutics for IBD and related autoimmune disorders.

Applications


  • Treatment of autoimmune inflammatory conditions such as IBD and RA.
  • Treatment of neuroinflammatory conditions such as multiple sclerosis (MS).
  • Treatment of other inflammatory mediated diseases such as psoriasis, systemic sclerosis and ankylosing spondylitis.
  • All MMPs and ADAMs proteases possess an autoinhibitory pro-domain and therefore this technology can be broadened to other MMP and ADAM targets.

Advantages


  • TACE pro-domain is highly potent and efficient.
  • TACE pro-domain is metabolically stable, unlike small molecule inhibitors of TACE.
  • Targeting TACE through nature-inspired protein design may constitute a safer approach to combat TNF-? induced inflammation.
  • Unlike non-specific small molecule inhibitors, which target the conserved catalytic zinc site of TACE, TACE pro-domain shares little homology to other MMPs, making it a good candidate for specific inhibitor of TACE.

Technology's Essence


The A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-? converting enzyme (TACE), has been defined as the major shedding protease for a broad range of substrates predominantly the key immuno-regulatory cytokines TNF-?. Cleavage by TACE renders TNF-? pro-inflammatory, highlighting ADAM17 as a rationale target for treatment of autoimmune diseases such as IBD and arthritis. A team of researchers at the Weizmann institute headed by Prof. Irit Sagi, has employed a sophisticated approach towards TACE targeting by exploiting its autoinhibitory pro-domain as a platform for the ‘smart design’ of TACE selective natural inhibitors. The therapeutic potential of TACE pro-domain was demonstrated in IBD mouse models, where TACE pro-domain administration showed significant improvement in multiple parameters such as reduced mortality and weight lost, in a dose dependent manner. Additional in vivo studies demonstrated that the TACE pro-domain is highly stable in vivo and harbors specificity towards the activated immune cells located in colon lesions. Thus, the novel TACE inhibitor presented in this technology leads to significant therapeutic effects and is beneficial in controlling inflammation in IBD disease manifestations in mice.

+
  • Prof. Irit Sagi
1587
An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively. Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although...

An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively.
Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although SGAs contribute to plant resistance to a wide range of pathogens and predators some are considered as toxic to humans, with potato known as most relevance to food safety.
This innovative technology offers improvement  of nutritional composition and prolonged shelf-life of Solanaceous species, which are widely consumed crop-plants with a market size of hundreds of billions of tones produced yearly worldwide.

Applications


Modification of steroidal glycoalkaloids and steroidal saponins compounds in plants can be used for two purposes:
1. Widely used crop-plants from Solanaceae species with reduced anti-nutritional components.  Leading to a longer shelf-life of crop-plants with safer nutritional compounds. 
2. Highly resistant modified plant with enriched toxic steroidal glycoalkaloids content for non-edible usage. 

Advantages


  • Prolongs shelf-life- by preventing post-harvest elevated toxicity levels.
  • Reduction of undesired anti-nutritional alkaloids, by means that do not affect other biological plant pathways.
  • Helps avoiding spoilage and toxicity of plants that manifest during storage and process.
  • Stress and pathogen-resistant plants for non-edible usage: Genetically modified plants with elevated toxic steroidal glycoalkaloids content will result in enhanced resistance to stress related factors. The outcome will also be prolonged shelf-life achieved in a clean economic manner (reduced need of pesticides/ insecticides).

Technology's Essence


The invention relates to key genes and enzymes on the biosynthesis pathway converting cholesterol to SGA. Biosynthesis involves an array of genes. Modulation of specific regulatory, transcription factor genes had enabled strict control of the production of steroidal alkaloids and glycosylated derivatives therefore.
Prof. Asaph Aharoni discovered the key genes in the biosynthesis of steroidal saponins and steroidal alkaloids in his lab at the Weizmann institute. He also developed a method for altering the gene expression and the production (reduction or elevation) of these components in plants from the Solanaceae species.

+
  • Prof. Asaph Aharoni
1566
Novel nanoparticle lubricants can significantly reduce friction of different dental devices and enable reduction of treatment times. Different dental applications suffer from excessive friction, which severely compromise their function. For orthodontic procedures, friction significantly reduces...

Novel nanoparticle lubricants can significantly reduce friction of different dental devices and enable reduction of treatment times. Different dental applications suffer from excessive friction, which severely compromise their function. For orthodontic procedures, friction significantly reduces effectiveness and thereby leads to prolonged treatments. In root canal treatments, NiTi (Nickel-Titanium) endodontic files are prone to fatigue-induced and incidental failure.

This invention presents coating with inorganic fullerene-like nanoparticles of WS2 (IF-WS2) impregnated in a metal matrix, as an effective friction-reducing agent. The unique structure of these particles provides them with high lubricity. Consequently, the problem of friction during orthodontic treatment could be minimized, enhancing anchorage control, reducing duration of treatment and decreasing the risk of root resorption. The same coating is shown to significantly improve the lifetime of endodontic files by alleviating fatigue and failure, having vast implications on duration, safety and consequences of root canal treatments.

Applications


  • Friction-reducing coating for orthodontic wires.
  • Friction-reducing coating for NiTi endodontic files.

Advantages


  • Efficient – a significant reduction in the applied friction forces.
  • May be applied on several appliances (wire and bracket or Efs and dental implant) for maximal friction-reducing effect.
  • The coating may be incorporated in the manufacture process of the appliance, and may not require additional manufacture step.
  • Biocompatible – Initial tests in animals suggest safety from toxic effects
  • Does not change the unique characteristics of the NiTi shape memory alloy.

Technology's Essence


WS2 fullerene-like nanostructures (IF-WS2) are 20-200nm particles that are formed under certain reducing and sulfidizing conditions and elevated temperatures, from tungsten oxide (WO3) nanoparticles. Good lubricity is attributed to their multiple-layered structure. As the load between rubbed surfaces increases, nanoparticles gradually deform and exfoliate to coat the asperities at the interface. The weak forces between the thin sheets of the exfoliated nanoparticles allow a very low shear force sliding motion between the two contacting bodies.

Experimental testing showed significant reduction in the static friction resistance to sliding in IF-WS2 coated archwires at the different angles, especially in the 10? tilt. At initial stages of treatment, IF-WS2 nanoparticles act as spacers and reduce the number of asperities that come into contact resulting in a lower coefficient of friction. As the angle grows and the load at the edges of the slot increases, the exfoliation of some of the nanoparticles occurs, resulting in the dry lubrication of the sliding. Furthermore, IF-WS2 nanoparticles act as a protection against oxidation of the metal surface

+
  • Prof. Tenne Reshef
1633
The ErbB family consists of four structurally related receptor tyrosine kinases. Excessive ErbB signaling is associated with enhanced tumorogenesis, and as such serves as a major therapeutic target in a wide array of solid tumor cancers. A member of this family, the human epidermal growth factor...

The ErbB family consists of four structurally related receptor tyrosine kinases. Excessive ErbB signaling is associated with enhanced tumorogenesis, and as such serves as a major therapeutic target in a wide array of solid tumor cancers. A member of this family, the human epidermal growth factor receptor 2 (ErbB-2/HER2), is overexpressed in a variety of human cancers, including breast and gastric tumors. ErbB-2/HER2 amplification correlates with elevated metastatic activity and poor prognosis. An innovative and highly potent approach for cancer treatment is proposed here, based on delivering novel nucleic acid-based entities called aptamers targeting ErbB-2/HER2. Remarkably, the antitumor effect exerted by the multimeric anti-ErbB-2/HER2 aptamers is twofold stronger than that elicited by currently available antiErbB-2 monocolonal antibodies.

Applications


  • A novel class of molecules for the treatment of human cancers exhibiting excessive ErbB-2/HER2 signaling.
  • Combination with other therapeutic modalities may predictably enhance the antitumor activity of the aptamer.
  • Aptamers may also be harnessed as carrier molecules to deliver toxic loads into cancer cells.

Advantages


  • Unlike traditional methods for producing monoclonal antibodies, no organisms are required for the in vitro selection of oligonucleotides. This facilitates the selection and chemical design process of aptamers.
  • Aptamers are produced chemically in a readily scalable process.
  • Non-immunogenic.
  • Unlike other oligonucleotide-based therapeutics (siRNAs, antisense RNA), aptamer therapeutics can be developed for intracellular as well as extracellular or cell-surface targets.

Technology's Essence


Aptamers are single-stranded oligonucleotides that fold into defined architectures and avidly bind to targets such as proteins, with the same effectiveness and affinity associated with mAbs. Using a novel screening technology the research team has identified a multimeric aptamer with pronounced ErbB-2/HER2 inhibitory activity. Preliminary preclinical experiments show that treatment of gastric tumor-bearing mice with trimeric aptamer resulted in reduced tumor growth that was nearly twofold stronger than that achieved with a monoclonal anti-ErbB-2/HER2 antibody.

+
  • Prof. Yosef Yarden
  • Prof. Michael Sela
1596
A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a...

A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a light beam requires fast, accurate, and simple measurement techniques to fully characterize it’s properties.Currently, the ability to measure light polarization exists only qualitatively and at only one specific point in a light beam. Our scientific team has developed a new method to measure changing light polarizations in real-time. 
Our demonstrated system presents a simple way to continuously measure and quantify light polarizations in real-time, throughout the entire length of a light beam. This method has the potential to set a new industry standard, and could lead to a number of applications that were previously not possible.
 

Applications


  • Molecular imaging
  • Medical and industrial lasers
  • Non-destructive testing
  • Analytical chemistry
  • Fiber-optic communications
  • Cryptography
  • Astronomy

Advantages


  • Proved accuracy
  • Simple technique
  • Compact configuration
  • Incorporate into existing equipment
  • Can measure fully polarized, partially polarized, and un-polarized light
  • Two modes of operation:   Space-variant polarization measurements and Wavelength-variant polarization measurements

Technology's Essence


Our polarization measurement technique is based on splitting an input light beam into six parallel beams, each having a predetermined shift in the polarization state with respect to the other beams. The beam components are simultaneously detected using a pixel matrix, such as a CCD camera, to determine their intensity distribution. From this, the polarization state distribution along the cross-section of the input optical beam is determined and we can calculate the Stokes parameters, a set of values which defines polarized light. This allows us to characterize and quantify fully polarized, partially polarized, and un-polarized light at every point in the beam in real-time, with either static or dynamic polarization states. Our method can be applied for two conditions of varying polarizations – changing with position (space-variant) or changing in color (wavelength-variant).

+
  • Prof. Nir Davidson
1571
A novel social behavior monitoring system automatically tracks the precise location of each animal at excellent temporal resolution. This innovative technology provides simultaneous identification of complex social and individual behaviors via an integration of RFID and video surveillance. There is a...

A novel social behavior monitoring system automatically tracks the precise location of each animal at excellent temporal resolution. This innovative technology provides simultaneous identification of complex social and individual behaviors via an integration of RFID and video surveillance.

There is a rapidly growing interest in detecting the molecular substrates of social behavior. This interest is driven by the vast implications of such understanding in both research and the pharmaceutical industry, since some prevalent pathological conditions are mainly characterized by a behavioral deficit or abnormality.

It is extremely challenging to quantify social behavior in a reliable manner. Existing methods struggle to find a balance between objectively quantifying behavior on one hand while enabling a natural, stress-free behavioral estimation on the other hand. Currently, researchers work in a strictly controlled and constrained environment that is estranged and stressful to the animals. The outcome is a highly contaminated measurement of natural behavior. This difficultly becomes increasingly complex when more than one animal is involved as often applied in social behavioral studies.

Applications


  • Rigorous characterization of social organizational deficiencies and evaluation of their severity in animal and human models (for example in autism).
  • An optimized system for estimating the efficacy of clinical treatments.

Advantages


  • Long-term tracking of unlimited number of simultaneously studied animals.
  • Machine based, hence objective and automated quantification of behavior.
  • Excellent spatiotemporal resolution in semi natural environment
  • Flexible- the number, size and distribution of the RFID antennas can be adjusted with different enclosure dimensions.
  • Can be applied from Individual behavioral profile or pairs interactions up to collective social organization of groups.
  • Systematic analysis and classification of basic locomotion up to more complex social

Technology's Essence


Researchers at the Weizmann institute developed a method for tightly controlled monitoring of social behavior in a semi-natural environment. They used integrated and synchronized chip reporting and continuous video postage to precisely locate each individual animal. Using this automated monitoring which provides an exceptional temporal resolution they achieved correct identification of numerous basic individual behaviors as well as complex social behaviors. Such complex behavioral profiles set the basis for subsequent analysis which reveals the formation of a social hierarchy.

+
  • Dr. Tali Kimchi
1644
Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices. The present innovation is based on...

Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices.

The present innovation is based on Chiral Induced Spin Selectivity (CISS) effect that was established experimentally and theoretically in the last decade, and allows for production of inexpensive, high-density universal memory-on-chip devices, that don’t require the use of permanent magnets.

Applications


·         Inexpensive, high-density universal memory-on-chip devices

·         The technology can be used as superior alternative for both Random Access memory and Flash memory

·         Surface-controlled spintronic devices

·         Logic and data processing


Advantages


·         Up to 70 times more storage on the same physical size

·         Up to 100 times lower energy consumption

·         Si-Compatible

·         High density (can reach Si technology limit)

·         Estimated low cost

·         Overcomes limitations of other magnetic-based memory technologies


Technology's Essence


Ferromagnets can be magnetized either by external magnetic fields or by spin polarized current. However, the current density required for inducing magnetization is extremely high and significantly affects the device’s structure and performance. The newly discovered CISS effect allows for magnetization switching of Ferromagnets, which is induced solely by adsorption of chiral molecules, where much lower current density is sufficient to induce the magnetization reversal. Chiral Memory technology uses the CISS effect for spin selectivity instead of the common ferromagnetic-based spin filters. This allows, in principle, the memory bit to be miniaturized down to a single magnetic nanoparticle or a nano-scale domain. The operation principle of the device relies on the spin-selective transmission of electrons through organic chiral molecules to the ferromagnetic layer of the device, which results in the magnetization of this layer and efficient storing of bits of information. The magnetization switching by local adsorption of chiral molecules eliminates the need for a permanent magnet.

+
  • Prof. Ron Naaman
1546
Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the...

Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the gene, and supplementing the host with specific tRNAs. Yet the full challenge of heterologous expression is not only to maximize expression per host cell, but also to minimize the burden on the host. The outlined invention describes a universally conserved profile of translation efficiency along mRNAs, based on the adaptation between coding sequences and the tRNA pool, to improve heterologous gene expression and thus protein production.

Applications


  • Improvement of the yield and success rate of recombinant protein production.

Advantages


  • Protein expression levels can be artificially increased
  • Minimization of the burden on the host

Technology's Essence


The translation efficiency profile of a gene is defined, for each codon position, as the estimated availability of the tRNAs that participate in translating that codon. The profile is high at codons that correspond to abundant tRNAs and low at codons that correspond to rare tRNAs. In this invention it is predicted that the first ~30-50 codons of genes appear to be translated with a low efficiency “ramp”, while the last ~50 codons show highest efficiency. The “ramp” serves as a late stage of initiation and is an optimal and robust means to reduce ribosomal traffic jams, thus minimizing occupation of free ribosomes, ribosomal abortions and, ultimately, the cost of protein expression. Implementation of appropriate ramping in heterlogous proteins, given the host?s tRNA pool, might improve the yield of expressed recombinant proteins.

+
  • Prof. Yitzhak Pilpel
1602
A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic...

A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic agents. However, although an efficient way to dowregulate bacterial and microbial gene expression has been long sought after, RNAi is not applicable in these species. The present technology offers a rapid and simple means to silence gene products in prokaryotic systems.

Applications


  • Treatment of bacterial infection, by targeting bacterial genes vital for antibiotic resistance or bacterial virulence.
  • Enhanced biofuel production by targeting genes that interfere with ethanol and/or hydrogen biosynthesis.
  • Generation of improved bacterial strains for the diary industry (e.g. phage-resistant strains).
  • Discerning prokaryotic gene function by silencing the expression of the gene product.

Advantages


  • The present technology may offer means to treat antibiotics-resistant strains.
  • Because CRISPR-based technology does not involve ‘classical’ genetic engineering, the resulting products do not require labeling as 'genetically modified'.
  • CRISPR-based technology system allows for the development of a rapid, scalable and high-throughput platform to probe the function of genetic circuits in prokaryotes.

Technology's Essence


CRISPR (clusters of regularly interspaced short palindromic repeats) is a recently discovered anti-viral system that functions as the prokaryotic-equivalent of the adaptive immune system. CRISPR provides bacteria with protection against foreign genetic elements such as viruses by incorporating short stretches of invading DNA sequences in genomic CRISPR loci. These integrated sequences are thought to function as a genetic memory that prevents the host from being infected by the viruses and other genetic elements containing this recognition sequence. A team of researchers at the Weizmann Institute, headed by Dr. Rotem Sorek, has developed a unique technology to gain robust and rapid silencing of prokaryotic gene expression by exploiting the CRISPR system capacity to efficiently downregulate gene products. This potent technology can potentially be utilized in a broad range of areas such as in the agriculture, food and pharmaceutical industries as well as in the scientific research arena.

+
  • Prof. Rotem Sorek
1577
A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of...

A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of desulfurization.Techniques to capture SO2 from coal-burning plants have not changed in nearly 40 years. Once implemented, the technology presented here can become significantly more efficient and environmentally friendly than existing techniques, since no slurry waste is created from the wet sorbents typically used to capture SO2.The novel system can selectively recycle SO2 into useful sulfur-based compounds which can be resold; utilizing a carbonate eutectic melt this procedure can also be aimed to generate elemental sulfur, an inert and non-toxic compound which can be stored long-term until required for further use.In a world anxious over climate change, yet in demand of more energy, solutions should have the capacity to be implemented quickly and incorporated into existing infrastructure. This technology offers the potential to tackle several problems with one simple solution.

Applications


Integrate into industrial fossil-fuel burning facilities which include:

  • Power plants
  • Cement factories
  • Steel foundries

Advantages


  • Implement into existing infrastructure and reduce reagents’ costs compared to current techniques
  • Significantly higher efficiency and elimination of hazardous waste by-products
  • Potential generation of revenue from recycled Sulfur waste.

Technology's Essence


The significant enhancement of this scrubbing technique is the sequentially operable scrubbing zone and regeneration zone, which communicate with one another via a molten eutectic mixture of lithium, sodium and potassium carbonates. In the scrubbing zone, an ingress flue gas interacts with the molten carbonates, resulting in chemical absorbance of the SO2 and in discharge of reaction gases. In the regeneration zone, either chemical or electrochemical melt regeneration takes place resulting in formation of sulfur containing vapor which is cooled down for converting the sulfur-containing vapor into a liquid and solid phase for a further collection and utilization.The technology developed by Prof. Igor Lubomirsky and his team introduces three essential improvements over past techniques: (i) the removal of sulfate from the melt is achieved at expected operating temperatures of an industrial scrubbing tower (480-550°C), which drastically reduces corrosion of metal components, (ii) the reduction of sulfates by CO gas rather than by carbon powder represents a simpler, one-step process, which results in a high reduction rate and allows for the reaction chamber to be small (few tens of m3 for a 1GW coal plant), and (iii) the removal of sulfate in the form of COS, rather than H2S, provides considerable freedom in choosing the final sulfur product – either sulfuric acid or elemental sulfur.

 

+
  • Prof. Igor Lubomirsky
1647
Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-...

Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.
Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-based search engines. Existing approaches are searching for a common cluster model. They are focused on identifying shared visual properties (such as a shared object) and subsequently grouping the images into meaningful clusters based upon these shared properties. Such methods are likely to fail once encountering a highly variable set of images or a fairly limited number of images per category.
Researchers form Prof. Michal Irani lab suggest a novel approach based on ‘similarity by composition’. This technology detects statistically significant regions which co-occur across images, which reveals strong and meaningful affinities, even if they appear only in few images. The outcome is a reliable cluster in which each image has high affinity to many images in the cluster, and weak affinity to images outside the cluster.

Applications


  • Images search engines - can be applied for collaborative search between users.
  • Detecting abnormalities in medical imaging.
  • Quality assurance in the fields of agriculture, food, pharmaceutical industry etc.
  • Security industry- from counting people up to identifying suspicious acts.
  • Computer games and brain machine interface.

Advantages


• Can be applied to very few images, as well as benchmark datasets, and yields state-of-the-art results.
• Handles large diversity in appearance.
• The search is not a global search, it requires no semantic query, tagging or pre-existing knowledge.
• The multi-images collaboration significantly speeds up the process, reducing the number of random samples and iterations.
• Set of images are obtained in time which is nearly linear in the size of the image collection.


Technology's Essence


In “clustering by composition”, a good cluster is referred as one in which each image can be easily composed using statistically significant pieces from other images in the cluster while is difficult to compose from images outside the cluster. Multiple images exploit their ‘wisdom of crowds’ to further improve the process. Using a collaborative randomized search algorithm images can be composed from each other simultaneously and efficiently. This enables each image to direct the other images where to search for similar regions within the image collection. The resulted sets of images affinities are sparse yet meaningful and reliable.

+
  • Prof. Michal Irani
1554
We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer...

We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer need to be of the same resonance. In addition, this technique is very susceptible to noise which limits efficiency. The present invention provides a technique for a robust and efficient mid-range wireless power transfer between two coils. This technique can transfer the energy between the coils without being sensitive to any resonant constrains, noise and other interferences that exist in the neighborhood of the coils

Applications


  • Simultaneous energy transfer to several electrical gadgets.

Advantages


  • Efficient
  • Not sensitive to electrical interference.
  • No need for an exact resonance match between transmitter and transformer.

Technology's Essence


The efficiency and robustness of this technology is achieved by adapting the process of rapid adiabatic passage (RAP) for a coherently driven two state atom to the field of wireless energy transfer. In other words, the resonance of the transmitter is tuned adiabatically to scan a resonant frequency range, thus arriving at a dynamic solution to the electrical transfer problem.

+
  • Prof. Yaron Silberberg
1621
Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases,...

Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases, age-related macular degeneration and atherosclerosis. The global market for angiogenesis stimulators and inhibitors is forecast to reach ~US $50 billion by the year 2015. Most of the currently marketed angiogenesis regulators, such as Avastin, typically display modest efficacy and therefore further highlight the great need for the development of novel therapeutics. The current technology presents a novel method to treat angiogenesis-related disorders by modulating apolipoprotein B (ApoB).

Applications


  • ApoB is a potential therapeutic target for the treatment of cancer and other non-neoplastic diseases.
  • ApoB levels may serve as a biomarker for cancer metastasis.

Advantages


  • The anti-angiogenic effect of LDL administration was demonstrated in vivo, in zebrafish models, as well as in vitro, in relevant human cells lines.
  • Regulation of ApoB levels may be applied to treat a broad range of angiogenesis-dependent diseases.
  • Detection of ApoB levels can be readily achieved by analysis of body fluids such as blood and plasma.

Technology's Essence


Using a high-throughput genetic screen for vascular defects in zebrafish, researchers at the Weizmann Institute of Science have identified a genetic mutation that leads to excessive angiogenesis. The mutated gene is responsible for the assembly of ApoB-containing lipoproteins such as LDL, otherwise known as the ‘bad’ cholesterol. The group has found that low levels of LDL promote the formation of new blood vessels by directly interacting with the VEGF pathway. The outlined technology offers methods to modulate the levels of ApoB in order to stimulate, or inhibit angiogenesis, dependent on the therapeutic strategy. For example, inhibition of angiogenesis by increasing ApoB levels may repress tumor growth and attenuate its metastatic potential. In another application of this technology, increased circulating levels of ApoB can serve as a biomarker for the overproduction of blood vessels, thus enabling early diagnosis of pathogenic states in angiogenesis-dependent diseases.

+
  • Prof. Karina Yaniv

Pages