You are here

Category
Technology Name
Briefcase
Scientist
1716
An efficient and selective decomposition of plant biomass carbohydrates to their basic components, carbon monoxide and hydrogen, for use as syngas.Terrestrial plants contain about 70% hemicellulose and cellulose, which constitute a significant renewable bio-resource with potential as an alternative to...

An efficient and selective decomposition of plant biomass carbohydrates to their basic components, carbon monoxide and hydrogen, for use as syngas.
Terrestrial plants contain about 70% hemicellulose and cellulose, which constitute a significant renewable bio-resource with potential as an alternative to petroleum feedstock for carbon-based fuels. Traditional conversion of biomass to liquid fuels has been in the form of ethanol and bio-diesel, but this process is inefficient and much of the starting material is unusable and ultimately becomes waste.[1] Additionally, use of ethanol or bio-diesel is not universal to all engines as vehicles require specialized components to run on these fuels.
The presented technology allows for significantly greater efficiency in use of starting material, and the versatile final product of syngas, which can be a fuel itself or used as a fuel precursor in the well-known Fischer-Tropsch process to create hydrocarbons.[2] Alternatively, in a hydrogen economy scenario, this method can also be used to convert carbon monoxide to hydrogen via the water-gas shift reaction. Advantageously, both processes allow for the polyoxometalate (POM) catalyst to be reused without the need for recovery, which enables continuous use in a refinery setting.

Applications


  • Liquid hydrocarbon fuel synthesis from syngas
  • Entry into a new market – hydrogen production from biomass

Advantages


  • Efficient and complete breakdown of starting biomass material
  • Possible to produce hydrogen or syngas as product

Technology's Essence


The technology allows for preparation of syngas by reaction of a carbohydrate with a POM catalyst in the presence of a concentrated acid under anaerobic conditions, to yield carbon monoxide, followed by electrochemical release of hydrogen. This two-step process allows for easy separation and storage of the desired products. An alternative application of the same POM catalyst relates to a method for preparing formic acid in a similar method, but in a solvent consisting of a mixture of alcohol and water.
This reaction is based on the unexpected finding that POM catalysts, such as H5PV2Mo10O40, catalyze plant biomass derived polysaccharides of general form (CnH2nOn)m, with high selectivity and efficiency under mild conditions. Formation of CO occurs through an intermediate formation of formic acid and formaldehyde, and transformation of these transition compounds in concentrated acid results in the desired CO product. During this process, hydrogen atoms are stored on the POM catalysts as protons and electrons. Hydrogen gas is subsequently electrochemically released from the POM catalyst, which returns the catalyst to its original oxidized state and allows for continued reuse.

+
  • Prof. Ronny Neumann
1671
A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined...

A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined conditions required for derivation and long term maintenance of such cells, without genetic modification.
Human naive pluripotent cells can be robustly derived either from already established conventional hESC lines, through iPSC reprogramming of somatic cells, or directly from ICM of human blastocysts. The new human pluripotent state was isolated and characterized; it can open up new avenues for patient specific disease relevant research and the study of early human development.

Applications


  • Reprogramming kits - Somatic cells to iPSC at near 100% efficiency (7days), iPSC to fully naive state.

Advantages


  • Deterministic iPSC reprogramming with no genetic modification required.
  • Stable pluripotency, with low propensity for differentiation
  • Reagents available off-the-shelf.

Technology's Essence


Hallmark features of rodent naive pluripotency include driving Oct4expression by its distal enhancer, retaining a pre-inactivation state of X chromosome in female pluripotent cell lines amongst others. Naive mouse ESCs epigenetically drift towards a primed pluripotent state; while human embryonic stem cells (hESCs) share several molecular features with naive mESCs (e.g. expression of NANOG, PRDM14 and KLF4 naive pluripotency promoting factors), they also share a variety of epigenetic properties with primed murine Epiblast stem cells (mEpiSCs). These observations have raised the question of whether conventioal human ESCs and induced pluripotent stem cells (iPSCs) can be epigenetically reprogrammed into a different pluripotent state, extensively similar with rodent na?ve pluripotency. Researchers at the Weizmann Institute discovered that supplementation of certain chemically defined conditions, synergistically facilitates the isolation and maintenance of pluripotent stem cells that retain growth characteristics, molecular circuits, a chromatin landscape, and signaling pathway dependence that are highly similar to naive mESCs, and drastically distinct from conventional hESCs.

+
  • Dr. Jacob (Yaqub) Hanna
1765
A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron.  Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns....

A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron. 
Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns. These techniques utilize radiation in the X-ray regime to image non-periodic objects in sizes that prohibit the use of larger wavelengths. However, retrieving the phase information of the diffraction pattern is not a trivial task, as current methods are divided based on a tradeoff between experimental complexity and computational reconstruction efficiency.
The method described here is suitable for use with existing lensless imaging techniques to provide direct, robust and efficient phase data while requiring reduced computational and experimental complexity. This method, demonstrated in a laboratory setup on 2D objects, is also applicable in 1D. It can be applied to various phase retrieval applications such as coherent diffractive imaging and ultrashort pulse reconstruction

Applications


  • Phase microscopy
  • Signal processing
  • Holography
  • X-ray imaging

Advantages


  • A Generic solution to the phase retrieval problem
  • Non-iterative approach
  • An efficient and noise robust tool

Technology's Essence


The method is based on the fact that the Fourier transform of the diffraction intensity measurement is the autocorrelation of the object. The autocorrelation and cross-correlations of two sufficiently separated objects are spatially distinct. Based on this, the method consists of three main steps: (a) The sum of the objects’ autocorrelations, as well as their cross-correlation, are reconstructed from the Fourier transform of the measured diffraction pattern. (b) The individual objects’ autocorrelations are reconstructed from their sum and the cross-correlation. (c) Using the two intensities and the interference cross term, double-blind Fourier holograph is applied to recover the phase by solving a set of linear equations.

+
  • Prof. Dan Oron
1722
Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater...

Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.
Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater versatility has been achieved. This technology is one such application of a novel POM catalyst and is exploited to cleave carbon-carbon double bonds in alkenes (olefins) through an aerobic oxidation reaction. Oxidation reactions are of particular interest because they are difficult to achieve on an industrial scale while maintaining “green” chemistry practices. [1]

--------------------------------------------------------------------------------
[1] Green Chem., 2007, 9, 717-730

Applications


  • As a novel catalyst in industrial organic chemistry processes
  • Sold as a stand-alone catalyst for laboratory or individual use

Advantages


  • Environmentally friendly oxidation reaction
  • Easy catalyst regeneration

Technology's Essence


Our approach is motivated by societal considerations that demand environmentally benign and sustainable solutions for oxidative reactions. As such, we have developed a scheme to react NO2 with a transition-metal-substituted POM which yields a metal-nitro intermediate that is competent for forming the precursors for oxidation with molecular oxygen, O2, to have a final product of ketones and/or aldehydes, and regenerate the POM catalysts.[1]
This method has preference towards di/tri-substituted alkenes. High yields of ketones or aldehydes have been produced and the POM catalyst is regenerated without further oxidation to carboxylic acids, as is typical with other oxidative catalysts.
The selective cleavage of carbon-carbon double or triple bonds with metal-nitro or metal-nitrito compound has not been reported. This exciting new discovery could lead to a wide variety of organic reactions not previously possible, along with revolutionary green oxidative chemistry techniques.

--------------------------------------------------------------------------------
[1] J. Am. Chem. Soc., 2014, 136(31), pp10941-10948 

+
  • Prof. Ronny Neumann
1800
A new software tool used for the removal of artifacts from transcranial magnetic stimulation (TMS) triggered electroencephalography (EEG) was developed by the group of Prof. Moses. The combined use of TMS with EEG allows for a unique measurement of the brain's global response to localized and abrupt...

A new software tool used for the removal of artifacts from transcranial magnetic stimulation (TMS) triggered electroencephalography (EEG) was developed by the group of Prof. Moses.

The combined use of TMS with EEG allows for a unique measurement of the brain's global response to localized and abrupt stimulations. This may allow TMS-EEG to be used as a diagnostic tool for various neurologic and psychiatric conditions.

However, large electric artifacts are induced in the EEG by the TMS, which are unrelated to brain activity and obscure crucial stages of the brain's response. These artifacts are orders of magnitude larger than the physiological brain activity, and persist from a few to hundreds of milliseconds. However, no generally accepted algorithm is available that can remove the artifacts without unintentionally and significally altering physiological information.

The software designed according to the model along with a friendly GUI is a powerful tool for the TMS-EEG field. The software has tested and proven to be effective on real datasets measured on psychiatric patients.

Applications


  • TMS triggered EEG diagnostics

Advantages


  • Easy to use software with a GUI
  • Exposes the full EEG from the brain

Technology's Essence


The new software tool is based on the observation that, contrary to expectation, the decay of the electrode voltage after the TMS pulse is a power law in time rather than an exponential. A model based on two dimensional diffusion of the accumulated charge from the high electric
fields of the TMS in the skin was built. This model reproduces the artifact precisely, including the many perplexing artifact shapes that are seen on the different electrodes. Artifact removal software based on this model exposes the full EEG from the brain, as validated by continuously reconstructing 50Hz signals that are the same magnitude as the brain signals.

+
  • Prof. Elisha Moses
1673
CF is the most common autosomal recessive disorder in western countries, affecting approximately 30,000 people in the US alone. A major risk in CF arises from chronic bacterial lung infections, affecting 80% of CF patients by the age of 25. Bacterial lung infections are also of major clinical...

CF is the most common autosomal recessive disorder in western countries, affecting approximately 30,000 people in the US alone. A major risk in CF arises from chronic bacterial lung infections, affecting 80% of CF patients by the age of 25. Bacterial lung infections are also of major clinical importance in patients with chronic obstructive pulmonary disease (COPD), trauma, burn wounds, sepsis, or in patients requiring ventilation. The infections are currently treated with antibiotics, which rapidly become inefficient as resistant bacteria strains arise. The present technology suggests a novel therapeutic approach for the prevention and treatment of bacterial lung infection in susceptible populations, especially CF patients

Applications


  • Alternative treatment for bacterial lung infections.
  • A prophylaxis for patients susceptible to bacterial lung infections

Advantages


  • A novel therapeutic approach to prevent or cure bacterial lung infection.
  • The new therapy is based on reinforcement of the physiological innate immunity rather than on antibiotics.
  • The new therapy can be easily administered, via inhalation.
  • FTY720, a SPH analog, is already in clinical use for treating multiple sclerosis.

Technology's Essence


Sphingosine (SPH), a natural bactericidal agent which acts as a part of the human innate immune system in the skin, was found to be an effective treatment and prophylaxis for bacterial lung infections in cystic fibrosis (CF) mice. The new technology is based on the discovery that both CF human patients and CF mice display reduced rates of SPH in the airways. Moreover, normalizing SPH levels by inhalation prevents or cures the infections in CF mice, thus rendering SPH and its analogs a potent therapeutic agent for CF patients, an alternative to antibiotics.

+
  • Prof. Anthony H. Futerman
1574
Spinal cord injuries (SCI) patients are deprived from using their abdominal muscles in order to facilitate an efficient cough and clear their airways. Functional Electric Stimulation (FES) may provide the abdominal contraction that is required; however, in order for such a device to fully substitute...

Spinal cord injuries (SCI) patients are deprived from using their abdominal muscles in order to facilitate an efficient cough and clear their airways. Functional Electric Stimulation (FES) may provide the abdominal contraction that is required; however, in order for such a device to fully substitute the help of a caregiver, it must be easily activated and precisely synchronized with the patient's intent to cough in order to replace the voluntary cough.
The present inventors present a device, which integrates nasal air signals, in the form of active sniff, with triggering of FES at a precisely timed onset following glottis closure. Tetraplegic patients that used this system produced a cough that is comparable to a physiotherapist-assisted cough and reported a major improvement in quality of life.
This device offers a fresh approach to cough assistance which combines superior comfort and efficiency, perfectly adjusted to the needs of spinal cord trauma.

Applications


  • Self controlled – enables quality of life, independence, intimacy.
  • Simple, compacted and portable.
  • Enables "smart coughing" – a patient's needs or commands are used to modify parameters synchronizing the cough.
  • Nasal air sensors are considered less intrusive and more reliable, than currently used mouth air sensors.
  • Potentially low cost system.

Advantages


  • Intuitive and easy to learn and control for any computer user. 
  • Simultaneous use of different controllers to improve and diversify gaming applications. 
  • Non-invasive and safe device

Technology's Essence


Nasal air controller technology and FES are integrated using an Arduino microcontroller device. This is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software.
The microcontroller receives analog inputs from pressure sensors and is programmed to trigger the FES. A command to cough from the patient may be two consecutive sniffs (nasal air signals). In addition, the system can potentially identify intent to cough using nasal air signals, without the need for a direct command.
One of the most important parameters of the invention is that the FES will be given during glottis closure. The system continuously samples the nasal air signal and defines glottis closure as a plateau in the signal. A machine learning element determines a typical glottis closure duration for each patient, providing the FES within this frame.
The FES is than given to the abdomen in order to facilitate coughing. The duration of the FES may be determined by a feedback which may be a value of emitted CO2, value of EMG, volume of sounds etc.
Finally, the device may be further down-sized to enable mobility and suit outdoor use.

+
  • Prof. Noam Sobel
1646
Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series...

Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series in one continuous experiment.
In order to design and develop inhibitors for therapeutic purposes, the reaction mechanisms of enzymes must be understood. For biological applications, a common methodology of addressing this need is combining Rapid Freeze Quench with Electron Paramagnetic Resonance (RFQ)-EPR, which allows the trapping and analysis of short lived intermediates in chemical reactions. However, commercial RFQ-EPR devices are limited for high field EPR applications due to the demand of large sample volumes for each time point.
Prof. Goldfarb and her team built a new RFQ apparatus based on microfluidic flow and unique ejection and freezing systems, which can be used for collecting small volume samples in capillaries for high field EPR.

Applications


This technology, combined with the variety of W-band high resolution EPR technique (ENDOR, DEER and ESEEM) enables better mechanistic studies of enzymatic reactions, with an emphasis on structural transformations during the reaction, in an efficient and accurate way.


Advantages


  • Collecting all RFQ time points in one continues experiment.
  • Produce small volume samples in the range of a few µl, and handles small capillaries, for high field ERP.
  • An improved dead time of ~5ms, relative to the commercial RFQs with a typical dead-time of 5–10 ms.
  • Ease-of-use and speed.

Technology's Essence


The innovative apparatus consists of two main parts: the microfluidic device and the freeze-quench setup. The microfluidic device comprises a mixer, which mixes the two reacting solutions, a flow path where the reaction occurs, and a sprinkler from which the solution is sprayed out of the device. Prof. Goldfarb and her colleagues improved the common mixing device by adding a fast stream of nitrogen gas which mixes with the ejected reaction solution, and sprays the frozen aerosol out in tiny drops at high speed.
The innovative RFQ device was planned to have a cold solid surface on which the freezing happens rather than the traditional ejection into a cold liquid, in order to minimize the losses of the frozen solution. Moreover the plate rotates at a speed correlated to the flow speed of the solution, thus samples of different reaction times can freeze on a different radius. The frozen samples are then collected into quartz capillaries.

+
  • Prof. Daniella Goldfarb
1604
Novel reporter gene for magnetic resonance imaging applications.The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology and clinical medicine. Magnetic Resonance Imaging (MRI) is a widely used noninvasive clinical diagnostic...

Novel reporter gene for magnetic resonance imaging applications.The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology and clinical medicine. Magnetic Resonance Imaging (MRI) is a widely used noninvasive clinical diagnostic tool that offers views into deep tissues at exquisite spatial resolution. Recently, MRI has emerged as a valuable tool for monitoring the expression of genes by utilizing metal-complexed MRI agents to display transgene activity in vivo. However, administration of metal complexes into tissues and cells is challenging. Intra-cellular metalloproteins such as Ferritin have been utilized as endogenous MRI contrast agents, but offer relatively low sensitivity. The present technology provides a novel Ferritin-based transgene with enhanced MRI contrast.

 

Applications


  • Non-invasive imaging of gene expression in transgenic mice models.
  • Monitoring target gene expression in pre-clinical studies.
  • Long-term cell labeling and tracking.
  • Visualization of cellular- and gene-based therapeutics.

Advantages


  • Does not require delivery of exogenous substrate.
  • Enhanced MRI contrast over current Ferritin-based reporters.
  • Conversion to magnetite is achieved in physiological conditions and not by synthetic modification or by extreme heating. 

Technology's Essence


Ferritin, the main Iron storage intracellular protein, contains a paramagnetic ferryhydrate core, and thus was proposed as an endogenous MRI reporter gene. However, Ferritin provides relatively low sensitivity. One way to increase sensitivity of Ferritin is to convert the non-crystalline ferrihydrate in its core into crystal magnetite as has been done chemically, to form magneto-ferritin. The current method enhances the magnetic properties of Ferritin by engineering a Ferritin protein fused to a bacteria-derived peptide. This novel recombinant fusion protein facilitates conversion of ferrihydrate into crystal magnetite and by this induces MRI contrast. The new construct can serve for monitoring delivery and differentiation of cells in vivo in cellular based therapy. 

+
  • Prof. Michal Neeman
1551
A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals,...

A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals, pharmaceutical and agrochemical industries. In addition, a catalytic carbon-carbon bond formation using non-activated aliphatic nitriles and carbonyl compounds was achieved with the manganese complex. These reactions are conducted under mild and neutral conditions, using low catalyst loading, require no hydrogen acceptors or oxidants, employ no corrosive or toxic reagents and generate no waste. Moreover, manganese is one of the most abundant transition metals on earth crust, making it appealing and biocompatible when considering a system for eventual scale-up and industrial use.

In view of global concerns regarding economy, environment and sustainable energy resources, there is an urgent need for the discovery of new catalytic reactions. These newly developed catalysts address key problems of current traditional synthetic methodologies, both from the economic and the environmental aspects.

Applications


·         Pharmaceuticals

·         Dyes

·         Cosmetics and fragrances

·         Fibers

·         Agrochemicals


Advantages


·         Cost-effective in terms of reagents, reactions conditions (low temperature and pressure) and waste treatment (green reactions).

·         New synthetic pathways that were not possible before, such as the synthesis of amides and imines directly from alcohols and amines, esters synthesis from alcohols and methanol synthesis from CO2 and hydrogen.

·         Broad substrate scope.

·         Excellent yields.


Technology's Essence


Prof. David Milstein’s group has discovered a new mode of action for metal-ligand cooperation, involving aromatization–dearomatization of ligands. Pincer-type, pyridine-based complexes of Mn, Ir, Rh, Ru, Pd, Pt and acridine complexes of Ru have been shown to exhibit such cooperation, leading to facile activation of C-H, C-C, H-H, N-H, O-H bonds, and to novel, environmentally friendly reactions catalyzed by Mn and Ru.

+
  • Prof. David Milstein
1583
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel...

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel technique developed at Weizmann Institute, has a disruptive potential to change this market.  

Prof. Y. Imry and his team at Weizmann Institute came up with Thermal Electric conversion technique, based on a new TE device architecture which allows performance enhancement. The core invention is in the field of Bi-junction thermoelectric device architecture, having a thermoelectric gate interposed between two electric regions, leading to thermal electric conversion efficiency optimization.

Applications


Various TE devices will benefit from better TE efficiency, achieved by the developed conversion technique. The growing market for thermoelectric energy harvesters will reach $865 million by 2023. Current TE market is driven by consumer energy harvesting applications and some niche segments:

  •  Automotive energy harvesting applications, since around 40% of the energy produced by internal combustion engines is currently lost in heat through the exhaust.
  • Wireless devices/sensors segment is forecasted to account for over a third of the overall market for thermoelectric harvesters and cooling by 2023.

Advantages


In order to drive down the thermoelectric module costs and facilitate broad deployment, TE has several barriers to overcome: 

  •  low conversion efficiency;
  • toxicity and low availability of chemical elements constituting part of the thermoelectric materials.

 In this context, the main TE market challenges are reaching higher efficiencies using low cost thermoelectric materials. These challenges can be addressed by the proposed technology.


Technology's Essence


Prof. Y. Imry and his team at Weizmann Institute have developed novel bi-junction TE device, having a thermoelectric gate interposed between two electric regions, aiming at TE efficiency improvement. Thermoelectric efficiency depends on the figure of merit (ZT). The figure-of-merit curves, for the developed 3-T TE device configurations show that higher ZT should be achieved.  

The secret essence of the invented configuration is in using two independently adjustable input parameters - voltage and temperature - as drivers for optimizing device thermoelectric efficiency.

 

+
  • Prof. Yoseph Imry
1662
Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and...

Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and cancerous cells. Also, the therapeutic role of the immune system is an essential element in the healing process due to bone marrow transplantation for hematologic malignancies.
However, a more efficacious and less toxic T cells based treatment is required. Effective therapy depends on the functional avidity between T cell receptors (TCRs) and peptide-MHC complex (pMHC). However the natural affinity of TCR is low and they do not naturally undergo the processes that improve antibody affinity, such as somatic hypermutation (SHM). Currently there is no method of increasing the affinity of a TCR to its ligand. Moreover there is no knowledge on how use affinity maturated TCRs for creating anti-tumor reactive cells
This technology presents a method of increasing the affinity of a TCR to its ligand. This is done by subjecting TCR genes to SHM via the enzyme Activation Induced cytidine Deaminase (AID). The technology further provides affinity maturated TCRs (in cell- bound or in soluble form) and their pharmaceutical potential for immunotherapy. 

Applications


  • Generating anti-tumor T cells
  • Generating T cells reactive against selected antigen

Advantages


  • Rapid
  • Effective

Technology's Essence


This novel technology reveals that the affinity of a TCR to its ligand may be increased remarkably by subjecting TCR genes to SHM, directed by AID.
First a nucleic acid construct encoding a TCR gene is expressed in a host cell. Next SHM is used to introduce mutations to the TCR gene. Last, the the cells will be analyzed for affinity maturation by tetramer staining and subsequently sorted by FACS.
There are three parallel approaches to perform affinity maturation for the TCR: (1) Ex-vivo affinity maturation system, using Tet-regulated expression of AID (2) Ex-vivo affinity maturation system, using controlled expression of AID by mRNA electrophoresis (3) In-vitro affinity maturation system, using extracts from cells that are in SHM and recombinant AID.

+
  • Prof. Rachel Lea Eisenbach
1628
New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and...

New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). However, current treatments of such conditions include general anti-inflammatory and immunosuppressive drugs that are of limited effectiveness and may cause serious side effects. Another class of drugs includes targeted therapies directed against TNF-?, that are associated with serious infections including tuberculosis (TB) and sepsis as well as increased risk of cancer in some cases. Thus, there is an urgent need for highly selective, safer and more effective drugs for inflammatory conditions that involve TNF-? as a key mediator. The present technology introduces a novel generation of candidate drugs that selectively inhibit the processing of TNF-?, thereby preventing it from exerting its pro-inflammatory properties. This technology provides a framework for the development of safer and more effective therapeutics for IBD and related autoimmune disorders.

Applications


  • Treatment of autoimmune inflammatory conditions such as IBD and RA.
  • Treatment of neuroinflammatory conditions such as multiple sclerosis (MS).
  • Treatment of other inflammatory mediated diseases such as psoriasis, systemic sclerosis and ankylosing spondylitis.
  • All MMPs and ADAMs proteases possess an autoinhibitory pro-domain and therefore this technology can be broadened to other MMP and ADAM targets.

Advantages


  • TACE pro-domain is highly potent and efficient.
  • TACE pro-domain is metabolically stable, unlike small molecule inhibitors of TACE.
  • Targeting TACE through nature-inspired protein design may constitute a safer approach to combat TNF-? induced inflammation.
  • Unlike non-specific small molecule inhibitors, which target the conserved catalytic zinc site of TACE, TACE pro-domain shares little homology to other MMPs, making it a good candidate for specific inhibitor of TACE.

Technology's Essence


The A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-? converting enzyme (TACE), has been defined as the major shedding protease for a broad range of substrates predominantly the key immuno-regulatory cytokines TNF-?. Cleavage by TACE renders TNF-? pro-inflammatory, highlighting ADAM17 as a rationale target for treatment of autoimmune diseases such as IBD and arthritis. A team of researchers at the Weizmann institute headed by Prof. Irit Sagi, has employed a sophisticated approach towards TACE targeting by exploiting its autoinhibitory pro-domain as a platform for the ‘smart design’ of TACE selective natural inhibitors. The therapeutic potential of TACE pro-domain was demonstrated in IBD mouse models, where TACE pro-domain administration showed significant improvement in multiple parameters such as reduced mortality and weight lost, in a dose dependent manner. Additional in vivo studies demonstrated that the TACE pro-domain is highly stable in vivo and harbors specificity towards the activated immune cells located in colon lesions. Thus, the novel TACE inhibitor presented in this technology leads to significant therapeutic effects and is beneficial in controlling inflammation in IBD disease manifestations in mice.

+
  • Prof. Irit Sagi
1556
Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars. Modern...

Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars.

Modern agriculture faces limited arable land and climate changes. Carbon fixation under these conditions will become a significant growth limiting factor. The proposed solution provides the ability to enhance crop yields using the same expanse of land.

The novel technology presents alternative synthetic carbon fixation pathways that were discovered by harnessing a systems biology approach. These pathways are predicted to harbor a significant kinetic advantage over their natural counter parts, making them promising candidates for synthetic biology implementation.

Applications


  • Synthetic organisms utilizing this revolutionary technology can offer higher carbon fixation rates as compared to natural alternatives allowing:
  • Superior rate of biomass generation, providing cost effective feedstock for the production of biofuels.
  • Enhanced food production via increased crop yields.

Advantages


  • Minimal thermodynamic bottlenecks and superior kinetics over natural counterparts.

Technology's Essence


The productivity of carbon fixation cycles is limited by the slow rate and lack of substrate specificity of the carboxylating enzyme, RuBisCo. In his discovery Dr. Milo addresses the inefficiency of the carbon fixation process through an alternative cycle that is predicted to be two to three times faster than the Calvin–Benson cycle, employing the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle.

A computational strategy was applied, comparing kinetics, energetic and topology of all the possible pathways that can be assembled from all ~4,000 metabolic enzymes known in nature.

The results suggest a promising new family of synthetic carbon fixation pathways.

+
  • Prof. Ron Milo
1587
An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively. Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although...

An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively.
Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although SGAs contribute to plant resistance to a wide range of pathogens and predators some are considered as toxic to humans, with potato known as most relevance to food safety.
This innovative technology offers improvement  of nutritional composition and prolonged shelf-life of Solanaceous species, which are widely consumed crop-plants with a market size of hundreds of billions of tones produced yearly worldwide.

Applications


Modification of steroidal glycoalkaloids and steroidal saponins compounds in plants can be used for two purposes:
1. Widely used crop-plants from Solanaceae species with reduced anti-nutritional components.  Leading to a longer shelf-life of crop-plants with safer nutritional compounds. 
2. Highly resistant modified plant with enriched toxic steroidal glycoalkaloids content for non-edible usage. 

Advantages


  • Prolongs shelf-life- by preventing post-harvest elevated toxicity levels.
  • Reduction of undesired anti-nutritional alkaloids, by means that do not affect other biological plant pathways.
  • Helps avoiding spoilage and toxicity of plants that manifest during storage and process.
  • Stress and pathogen-resistant plants for non-edible usage: Genetically modified plants with elevated toxic steroidal glycoalkaloids content will result in enhanced resistance to stress related factors. The outcome will also be prolonged shelf-life achieved in a clean economic manner (reduced need of pesticides/ insecticides).

Technology's Essence


The invention relates to key genes and enzymes on the biosynthesis pathway converting cholesterol to SGA. Biosynthesis involves an array of genes. Modulation of specific regulatory, transcription factor genes had enabled strict control of the production of steroidal alkaloids and glycosylated derivatives therefore.
Prof. Asaph Aharoni discovered the key genes in the biosynthesis of steroidal saponins and steroidal alkaloids in his lab at the Weizmann institute. He also developed a method for altering the gene expression and the production (reduction or elevation) of these components in plants from the Solanaceae species.

+
  • Prof. Asaph Aharoni

Pages