You are here

Category
Technology Name
Briefcase
Scientist
1506
A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products. Constant progress is made in solar and wind alternative energy production. Unfortunately, these...

A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products.

Constant progress is made in solar and wind alternative energy production. Unfortunately, these systems are weather and time-dependent. Additionally, most of the geographic areas best suited for harvesting these resources are remote from population centers. Therefore the need for a reliable method to store and transport renewable energy is clear.

CO can be easily converted into methanol, which is one of the major chemical raw materials and can by itself be used as fuel for diesel engines and the energy source for direct methanol fuel cells (DMFC).

At present no reliable method of CO2 to CO reduction is available. Either using low temperatures which leads to low thermodynamic efficiency (<60%), Requires precious metals for electrodes and results in toxic byproducts, or using high temperatures which Requires pure CO2 input and Produces a mixture of CO2 and CO.

The current technology describes an efficient, flexible, continues method for production of CO at high temperatures (900oC) without any byproducts or toxic materials.

Applications


  • Production of CO from CO2
  • Easy conversion into methanol

Advantages


·         No precious (Pt, Ag, Au, Pd) metals required

·         No hazardous chemicals involved, no pollution

·         Continuous operation is possible

·         One can use flue gas as a source

·         Capture of CO2 from air is possible

·         The system is very compact>20 kW/m3

·         Operation conditions are very flexible

·         The process fits existing infrastructure

·         CO can be easily converted into liquid fuel (CH3OH)


Technology's Essence


The outlined technology overcomes the basic problems of CO production by using molten Li2CO3 as the electrolyte, a Ti container (will not undergo corrosion), Ti cathode (does not catalyze decomposition of CO), and a graphite anode (no chemical reaction with Li2CO3). At 900°C and current density of 0.05-2 A/cm2, this unique system enables a thermodynamic efficiency close to 100%, continues production of CO – efficiently separating CO2 to CO and O2.

+
  • Prof. Igor Lubomirsky
1270
Monoclonal antibodies to IgE Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with...

Monoclonal antibodies to IgE

Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with immunoglobulins of other classes, and recognize an epitope on the murine Fc epsilon region.

Were shown to block IgE-Fc?R interactions and inhibit passive cutaneous anaphylaxis. 

Clone 84.1c recognizes a site on IgE, which is identical or very close to the Fc?R binding site. May be used for detection and manipulation of the IgE response in mice.

Reference:  Schwarzbaum S, Nissim A, Alkalay I, Ghozi MC, Schindler DG, Bergman Y, Eshhar Z. 1989. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions. Eur J Immunol 19(6):1015-23.

 

M182, M185, M186

+
  • Prof. Zelig Eshhar
1451
A monoclonal antibody against GluR3B, a peptide found in epilepsy patients, and especially in patients suffering from intractable, resistant forms of the disease, could be used in diagnosis kits as well as in drug development for this form of "autoimmune epilepsy".

A monoclonal antibody against GluR3B, a peptide found in epilepsy patients, and especially in patients suffering from intractable, resistant forms of the disease, could be used in diagnosis kits as well as in drug development for this form of "autoimmune epilepsy".

Applications


1. Producing a new kit for epilepsy patients, able to detect GluR3b Ab's and thus GluR3-mediated neuropathology
The anti GluR3B monoclonal Ab could be used for developing a new diagnostic kit to detect neuropathogenic human anti-GluR3B in serum and CSF of patients with epilepsy. The patient's GluR3B Ab's would compete and displace the GluR3B mAb's of its ligand: the GluR3B peptide. The presence of GluR3B Ab's in a patient, would indicate that autoimmunity against GluR3 may underlie the patient's neuropathology and a) would suggest the initiation of an immune-based therapy b) prevent useless and dangerous brain surgery c) prevent non-effective medication.

2. Drug design for GluR3-mediated neuropathology
The unique GluR3B monoclonal antibody could be used to screen a potential drug for 'Autoimmune Epilepsy'. The GluR3B monoclonal antibody could be used to screen for a molecule (i.e. Anti-idiotypic antibodies) that would block the GluR3 autoantibodies and their detrimental neuropathological effects.

3. Research tool for a kaleidoscope of purposes, including:

  • Detection of the GluR3 glutamate receptor subtype on various target cells.
  • Studies of the properties of the Glutamate/AMPA receptor subtype 3.
  • Studies of the Glutamate-liked agonist activity of the GluR3B monoclonal antibody, and of the GluR3 receptor ion channel gating properties.
  • Production of an animal model of 'Autoimmune Epilepsy'.
  • Studies of neuronal death caused by binding of the GluR3 autoantibody to glutamate/AMPA receptors.
  • Studies of behavioral impairments caused by binding of the GluR3 autoantibody to glutamate/AMPA receptors.

  • Technology's Essence


    Scientists from the Weizmann Institute of Science have discovered a unique anti-GluR3B monoclonal antibody Glu149/29/61.

    +
    • Prof. Vivian I. Teichberg
    • Prof. Vivian I. Teichberg
    1184
    Trace chemical or biological elements can be accurately detected and monitored in the field or at the point of care through use of this new quick, cost-effective platform technology based on a hybrid chemical-electronic detector. Analytes can be measured according to the electrical current changes they...

    Trace chemical or biological elements can be accurately detected and monitored in the field or at the point of care through use of this new quick, cost-effective platform technology based on a hybrid chemical-electronic detector. Analytes can be measured according to the electrical current changes they induce with high specificity and accuracy at parts-per-billion (ppb) levels.

    Applications


    Transducer which may be developed to suite: Medical diagnostics: point of care, real time diagnostics of chemical and biological substances. Environmental watch: monitoring air or water pollution, testing for food poisoning. Chemical warfare: detection of chemical agents and explosives. Industry: monitoring industrial processes at real time.

    Technology's Essence


    Researchers at the Weizmann Institute have developed a platform technology based on novel hybrid chemical-electronic detector MOCSER (MOlecular Controlled SEmiconductor Resistor). The technology is based on a new type of a Gallium Arsenide (GaAs) electronic device covered with a monolayer of sensing molecules. The detection is achieved by measuring the current changes created due to analyte binding. The researchers have succeeded in showing high sensitivity and accuracy of the device down to parts per billion (ppb) levels. They have also demonstrated the possibility for broad applications of this detector by tailoring different sensing molecules on it and measuring various substances.

    +
    • Prof. Ron Naaman
    • Prof. David Cahen
    358
    Escherichia coli UTL2 Description: A "leaky" strain of E. coli, which is significantly more susceptible to cytotoxic agents. UTL2 holds a mutation in the galU gene causing an impaired outer membrane. Reference:  B?j? O, Bibi E. 1996. Functional expression of mouse Mdr1 in an outer membrane...

    Escherichia coli UTL2

    Description: A "leaky" strain of E. coli, which is significantly more susceptible to cytotoxic agents. UTL2 holds a mutation in the galU gene causing an impaired outer membrane.

    Reference:  B?j? O, Bibi E. 1996. Functional expression of mouse Mdr1 in an outer membrane permeability mutant of Escherichia coli. Proc Natl Acad Sci U S A 93(12):5969-74.

    +
    • Prof. Eitan Bibi
    1512
    Materials with unique optical and magnetic properties for preventing counterfeiting. Product counterfeiting is a worldwide problem; the range of counterfeited goods touches almost all industries, from clothing to pharmaceuticals. It is estimated that counterfeiting is a $600 billion a year business,...

    Materials with unique optical and magnetic properties for preventing counterfeiting.

    Product counterfeiting is a worldwide problem; the range of counterfeited goods touches almost all industries, from clothing to pharmaceuticals. It is estimated that counterfeiting is a $600 billion a year business, and that counterfeit goods currently account for 5-7% of world trade. For this, companies need strategies that include various layers of security. Counterfeiters have learned to duplicate various types of security measures, so it is important to use a combination of overt and covert techniques simultaneously. The present technology consists of complexes and clusters  with a unique combination of optical and magnetic properties, that may be utilized for product authenticity.

    Applications


    • Security 'markers' in documents or product authenticity, in the form of special printing inks or ink-jet applications


    Advantages


    • Delayed emissions guarantees low noise level from exogenous fluorescent impurities

    • The clusters are emissive both in solution as well as in the solid state

    • Emissive complexes and clusters are circular polarized and therefore provide an additional layer of genuineness, as the true nature of the markers can only be identified using appropriate filters
    • The high magnetic properties of several of the compounds allows fast automated document screening


    Technology's Essence


    The outlined technology consists of a series of chiral organic ligands, their metal complexes, and several multi-nuclear clusters. Upon excitation, fluorescence emission can be selected to occur in the visible or the invisible near infrared regions of the spectrum. The spectrum is characterized by several well resolved emission maxima. The unique combination of optical and magnetic properties of these materials makes them promising candidates to serve as security 'markers'.

    +
    • Prof. Abraham Shanzer
    1378
    Researchers at the Weizmann Institute developed a novel method to design error-free DNA libraries from error-prone oligonucleotides. The system surpasses existing methods for de novo synthesis of DNA libraries in speed, precision, amenability to automation and ease of combining synthetic with natural...

    Researchers at the Weizmann Institute developed a novel method to design error-free DNA libraries from error-prone oligonucleotides. The system surpasses existing methods for de novo synthesis of DNA libraries in speed, precision, amenability to automation and ease of combining synthetic with natural DNA fragments. 

    All DNA construction protocols struggle with the cumbersome task of cloning and sequencing synthetic DNA fragments, seeking an error-free one. The problem is worsened for longer synthetic DNA which is more prone to errors. Time spent on error correction, clone selection and sequencing is a major bottleneck that prevents de novo DNA synthesis from becoming a routine procedure in labs. 

    This innovative solution significantly decreases the need for labor-intensive time-consuming error correction methods, cloning and sequencing. Furthermore, efficient editing and reassembly of different genes is made possible due to a smart recursive reconstruction process.

     

    Applications


    • Design and construction of synthetic biological molecules and organisms.
    • Construction of designer DNA libraries.

     


    Advantages


    • Applicable in any lab with standard lab equipment. Faster and more precise than existing methods.
    • Amenable to automation, full synthesis in vitro with a modified smPCR protocol.
    • Very simple to combine synthetic and natural DNA fragments.
    • Does not require additional or external methods or reagents for error correction

     


    Technology's Essence


    Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed.

    +
    • Prof. Ehud Y. Shapiro
    1478
    Plants can regain enhanced color and aroma via increased production of aromatic amino acids. Researchers at the Weizmann institute of science discovered a key regulatory enzyme of a central metabolic pathway in bacteria and expressed it in plants, obtaining transgenic plants with increased levels of...

    Plants can regain enhanced color and aroma via increased production of aromatic amino acids. Researchers at the Weizmann institute of science discovered a key regulatory enzyme of a central metabolic pathway in bacteria and expressed it in plants, obtaining transgenic plants with increased levels of secondary metabolites including higher level of aromatic amino acids.

    Farmers and researches have implemented intense selective breeding in flowering plants as an attempt to improve features of decorative flowers, focusing on appearance and shelf life. Consequently, one of the most valuable qualities of the flower such as its scent and had been severely weakened. Traditional breeding is limited in its ability to supply the market demand for creating original or enhanced colors due to genetic requirements.

    The innovative method can improve scent and color of decorative flowering plants without interfering with other natural mechanisms of the plant.

    Applications


    • Improved esthetical value due to strong color and pleasant scent to ornamental flowers.
    • The color and scent of flowers has an additional eco-systematic role in the reproduction of fruits. Manipulating both color and odor may allow future optimized ability the repulse insects or attracts pollinators. 
    •  This method can be applied not only to enhance naturally existing color but also for the recently commercialized production of new colors of plants. For example flavonoid biosynthesis which was shown to be enhanced by this method was also found to be highly relevant in generating unique flowers colors

    Advantages


    • Enhanced fragrance and colors utilizing natural metabolic pathways of flowering plants.
    • No breeding and selection required to enhance flowers’ traits.
    • Endogenous integration between bacteria and plant that involves no interference with other natural mechanisms in the plants.

    Technology's Essence


    Researches at Prof. Gad Galili’s lab elicited a significant increase in the direct products of the shikimate pathway and in the aromatic amino acid Phenylalanine.

    A central regulator in the shikimate pathway is the first committed enzyme of the pathway; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). The bacterial DAHPS is feedback inhibited by a separate amino acid. At the core of this technology is the dominant isoform that is the AroG gene which is under the regulation of Phenylalanine and responsible for 80% of the total DAHPS activity.

    By expressing a mutant bacterial AroG gene encoding a feedback insensitive DAHPS in transgenic Arabidopsis plants, researchers achieved increased levels of the shikimate direct metabolites, products and aromatic amino acids. Detailed analysis revealed that while no metabolite exhibited decreased levels in the transgenic plants, the levels of shikimate intermediate metabolites, phenylalanine, tryptophan, and a verity of secondary metabolites (such as auxin and hormones conjugates) were increased by the mutant bacterial gene.

    +
    • Prof. Gad Galili
    • Prof. Asaph Aharoni
    1250
    A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is...

    A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is refined, until the full pattern is reached.

    Applications


    These methods for motion-based segmentation may be used in a multitude of applications that need to correctly identify meaningful regions in image sequences and compute their motion. Such applications include:

    1. Surveillance and homeland security - detecting changes, activities, objects.
    2. Medical Imaging - imaging of dynamic tissues.
    3. Quality control in manufacturing, and more.

    Technology's Essence


    Researchers at the Weizmann Institute of Science have developed a multiscale, motion-based segmentation method which, unlike previous methods, uses the inherent multiple scales of information in images. The method begins by measuring local optical flow at every picture elements (pixels). Then, using algebraic multigrid (AMG) techniques, it assembles together adjacent pixels which are similar in either their motion or intensity values into small aggregates - each pixel being allowed to belong to different aggregates with different weights. These aggregates in turn are assembled into larger aggregates, then still larger, etc., yielding eventually full segments.

    As the aggregation process proceeds, the estimation of the motion of each aggregate is refined and ambiguities are resolved. In addition, an adaptive motion model is used to describe the motion of an aggregate, depending on the amount of flow information that is available within each aggregate. In particular, a translation model is used to describe the motion of pixels and small aggregates, switch to an affine model to describe the motion of intermediate sized aggregates, and finally turn to a perspective model to describe aggregates at the coarsest levels of scale. In addition to this, methods for identifying correspondences between aggregates in different images are also being developed. These methods are suitable for image sequences separated by fairly large motion.

    +
    • Prof. Ronen Ezra Basri
    1033
    A novel diagnostic test to identify individuals with increased risk of lung cancer. Lung cancer is the number one killer among cancers, with 160,000 deaths/year in the USA and 1.6 million/year worldwide. Early detection of lung cancer increases 5-year survival rate from 4% to 54%. Moreover, the...

    A novel diagnostic test to identify individuals with increased risk of lung cancer.

    Lung cancer is the number one killer among cancers, with 160,000 deaths/year in the USA and 1.6 million/year worldwide. Early detection of lung cancer increases 5-year survival rate from 4% to 54%. Moreover, the National Lung Cancer Trial (NLST) showed that early detection of lung cancer by low-dose CT reduces mortality by at least 20%. Despite recommendations for low-dose CT screening for heavy smokers fulfilling the NLST criteria, compliance is low. In addition, 80 million smokers and ex-smokers in the US who do not fulfil NLST risk criteria have no recommended solution.

    The MyRepair test fulfils this unmet medical need by providing a quantitative prediction of lung cancer risk using a simple blood test. The test is based on a personalized measurement of the patient’s DNA repair capacity, a mechanism which is highly connected to the onset of cancer. Therefore, the MyRepair technology can potentially increase early detection of lung cancer and thus save lives.

     

    Applications


    A novel diagnostic test to identify individuals with increased risk of lung cancer


    Advantages


    ·         Simplicity – MyRepair is based on a simple, cost-effective blood test.

    ·         Accessibility – Compared to low-dose CT which requires specific equipment, the MyRepair test can be easily integrated in general diagnostic labs and therefore may be more accessible to a larger portion of the population.

    ·         Additional applications – Since the test is based on measuring personalized DNA repair mechanism, it can be adopted in the future for the diagnosis of additional cancer types and DNA repair related diseases.


    Technology's Essence


    Based on the strong and well documented connection between impaired capacity for DNA repair and onset of cancer, the Livneh lab invented the MyRepair Test, a method for predicting lung cancer risk, based on measuring activity of 3 DNA repair enzymes.

    Combining enzyme activities with experimental risk estimates generated MyRepair Score, which measures personalized DNA repair capacity of tested subjects.

    An epidemiological/clinical study performed in Israel, further validated in an independent UK study, demonstrated that lung cancer patients have lower MyRepair Score than healthy people. In addition, subjects who test MyRepair-positive have an 85-fold higher risk to develop lung cancer compared to the general population.

    Low MyRepair Score is a risk factor independent of smoking, and of comparable magnitude, indicating that it can be a prognostic tool for smokers, ex-smokers, and non-smokers.

    +
    • Prof. Zvi Livneh
    1522
    A method for enhancing the spatial and or temporal resolution (if applicable) of an input signal such as images and videos.   Many imaging devices produce signals of unsatisfactory resolution (e.g. a photo from a cell-phone camera may have low spatial resolution or a video from a web camera may have...

    A method for enhancing the spatial and or temporal resolution (if applicable) of an input signal such as images and videos.

     

    Many imaging devices produce signals of unsatisfactory resolution (e.g. a photo from a cell-phone camera may have low spatial resolution or a video from a web camera may have both spatial and temporal low resolution). This method applies digital processing to reconstruct more satisfactory high resolution signals.

     

    Previous methods for Super-Resolution (SR) require multiple images of the same scene, or else an external database of examples. This method provides the ability to perform SR from a single image (or a single visual source). The algorithm exploits the inherent local data redundancy within visual signals (redundancy both within the same scale, and across different scales).

     

    Examples of the methods' capabilities can be found here: http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

     

    Applications


    • Enhancing the spatial resolution of images

    • Enhancing the spatial and or temporal resolution of video sequences

    • Enhancing the spatial and or temporal resolution (if applicable) of other signals (e.g., MRI, fMRI, ultrasound, possibly also audio, etc.)

     


    Advantages


    • No need for multiple low resolution sources or the use of an external database of examples.

    • Superior results are produced due to exploitation of inherent information in the source signal.


    Technology's Essence


    The framework combines the power of classical multi image super resolution and example based super resolution. This combined framework can be applied to obtain super resolution from as little as a single low-resolution signal, without any additional external information. The approach is based on an observation that patches in a single natural signal tend to redundantly recur many times inside the signal, both within the same scale, as well as across different scales.

    Recurrence of patches within the same scale (at subpixel misalignments) forms the basis for applying the 'classical super resolution' constraints to information from a single signal. Recurrence of patches across different (coarser) scales implicitly provides examples of low-resolution / high-resolution pairs of patches, thus giving rise to 'example-based super-resolution' from a single signal (but without any external database or any prior examples).

    +
    • Prof. Michal Irani
    1392
    A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial...

    A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial production of these chemicals and/or other products leads to effluent streams - highly toxic, contaminated aqueous solutions - from factories. These effluents must be treated prior to release of the water back into the environment. 2. Following use, these chemicals (e.g., agrochemicals, pharmaceuticals) become serious pollutants as they eventually find their way into the soil, sediment, and surface and/or groundwater environments. Current treatment methods are severely limited. Treatment of effluent streams by, e.g., filtration, photocatalysis, or bioreactors is often highly ineffective - the waste compounds not being easily captured, degraded or transformed - and/or prohibitively expensive.

    Applications


    • Detoxification of industrial effluents, especially from petrochemical, agrochemical and pharmaceutical industries 
    • Waste water decontamination 
    • In situ and ex situ remediation of water polluted by organic and other contaminants

    Advantages


    • Cost efficient
    • Quick

    Technology's Essence


    Researchers at the Weizmann Institute of Science have developed a new process for degradation and/or treatment of practically any organic contaminant in aqueous solutions under oxidizing (aerobic) conditions. A suite of catalytic materials has been developed which allows both in situ and ex situ remediation of polluted water by oxidative chemical degradation of contaminants. The technology eliminates or reduces a broad range of water pollutants - industrial organic solvents, petrochemicals, agrochemicals and pharmaceuticals (e.g., endocrine disruptors such as antiobiotics and hormones) - and is particularly effective for treating concentrated industrial effluents, under technically convenient conditions. The reaction products consist essentially of benign materials.

    +
    • Prof. Brian Berkowitz
    1482
    Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms...

    Modification of the electronic properties of layered-type semiconductors can be accomplished by doping/alloying of the semiconductor. In the present disclosure we show that doping of MoS2 and WS2 nanotubes/nanoparticles can be accomplished by doping with either Re (n-type) or Nb (p-type) foreign atoms. These nanoparticles combine both superior mechanical properties and high electrical conductivity.

    The main market for these kinds of nanoparticles is in thin films that combine superior mechanical and electrical properties. For example, as part of touch screensin addition, polymer nanocomposites containing such nanoparticles can be used among other things in electromagnetic shielding and conductive films for packaging and high performance adhesives. These nanoparticles are expected to reveal interesting catalytic applications, for example to obtain sulfur free gasoline. They can be used in third generation photovoltaic cells, etc.

    Applications


    • Catalytic processes for energy storage and sulfur free gasoline.
    • Polymer nanocomposites for packaging
    • Electromagnetic shielding.
    • Conductive glues/adhesives with superior performance.
    • Energy storage.

    Advantages


    The combination of superior mechanical properties and high electrical conductivity offers new kinds of applications in catalysis; energy storage; high performance nanocomposites and in macroelectronics.

     

    +
    1265
    A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale. The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity...

    A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale.

    The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity of contaminating compounds, and their extreme persistence in the environment, define a complex challenge and serious threat. Feasible technological responses to deal with growing deterioration in water resource quality are difficult to develop, largely because of the wide variety of contaminants having different properties, the stringent environmental standards that must be met, and the inherent heterogeneity of natural aquatic systems. The quest for cost-effective, environmentally-acceptable methods that can target a wide spectrum of contaminants, in situ and ex situ, is urgent and critical today more than ever.

    The approach of the technology presented here is to reduce their oxidation state, i.e., to transform them electrochemically. In most cases, complete transformation of contaminants from the oxidized-organic group produces environmentally innocuous compounds, while reduction of heavy metals renders them insoluble and immobile, and therefore much less harmful. These treatment methods can be applied both in situ and ex situ for decontamination of soils, sediments, water, wastewater and gaseous process streams.

    Applications


    •           Polluted water and wastewater treatment.

    •           Soil decontamination.

    •           Gaseous process stream treatment.


    Advantages


    •           Environmentally friendly output.

    •           Cost effective.

    •           Can be applied in situ as well as ex situ.


    Technology's Essence


    The treatment method presented here is based on nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix.  Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows

    high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours.

     

    +
    • Prof. Brian Berkowitz
    1441
    New protein as a target to treat B cell-related cancer.Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of...

    New protein as a target to treat B cell-related cancer.
    Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of leukemia each year. Presently, there is no cure for CLL, and the overall goal of leukemia treatment is to bring about a remission. Therefore, identifying new proteins that may serve as a target for inducing cell death in the malignant cells is highly desirable. The present technology identifies a new regulator protein that is essential for the survival of CLL cells.

    Applications


    • Treatment of CLL, as well as other B cell-related cancers (e.g. gastric cancer and renal cell carcinoma), by blocking CD84 activity
    • Diagnosis of CLL

    Advantages


    • Very specific to malignant B cells
    • Diagnosis, and therefore treatment, can be made at early stages of the disease

     


    Technology's Essence


    B cells taken from CLL patients have a high level of the protein CD84. Stimulation of CD84 upregulates the survival of B-CLL. However, inhibition of CD84 activity with a blocking antibody downregulates the expression of another protein which controls B-CLL survival, thus inducing cell death. Therefore, the present invention reveals CD84 as a regulator of B-CLL survival

    +
    • Prof. Idit Shachar

    Pages