You are here

Category
Technology Name
Briefcase
Scientist
1585
Our scientific team has discovered a method to apply the Gabor Transform to signal processing and data compression. Compared to existing methods that are based on Fourier transform, the new method provides for up to 25% savings in content size for video, audio and images, without any loss in quality...

Our scientific team has discovered a method to apply the Gabor Transform to signal processing and data compression.

Compared to existing methods that are based on Fourier transform, the new method provides for up to 25% savings in content size for video, audio and images, without any loss in quality.

By embracing our method, content providers, ISPs and mobile carriers can achieve major savings in data storage and data transfer costs.

Applications


The method can be used in virtually all applications involving data storage, communication and signal processing. One of the main commercial application is for lossy data compression for video, audio and images. Those types of content constitute the bulk of today’s Internet traffic, and improved compression will generate substantial savings in storage and data transfer costs.

The method also applies to the storage, communication and processing of quantum information and may therefore be expected to have applications in quantum calculations, quantum communication and quantum information processing.


Advantages


Existing data compression methods are based on numerical implementations of the Fourier transform, known as FFT, DCT and similar.

Compared to these methods, Gabor transform method demonstrates a very significant advantage in terms of the size of compressed material.  

The method provides for up to 25% savings in data size, while keeping the same perceived quality of the content.


Technology's Essence


We have discovered the definitive solution to the problem of obtaining accuracy and stability in the Gabor transform.  We realized that there must be an exact informational equivalence between the Gabor transform and the discrete Fourier transform (DFT). The latter is known to provide an exact representation of functions that are band-limited with finite support.  Since the DFT implicitly assumes periodic boundary conditions, to obtain this exact equivalence one needs to modify the Gaussians in the Gabor transform to obey periodic boundary conditions. This leads to Gaussian flexibility with Fourier accuracy --- precisely what has been sought since 1946.

+
  • Prof. David J. Tannor
1657
Bioengineered formatotrophic E.Coli can be utilized to efficiently generate biomass from electricity. A popular direction for cleantech in recent years is that of biorefineries, that use living organisms to supply the human demand for chemical commodities. Electricity is considered to be a potential...

Bioengineered formatotrophic E.Coli can be utilized to efficiently generate biomass from electricity. A popular direction for cleantech in recent years is that of biorefineries, that use living organisms to supply the human demand for chemical commodities. Electricity is considered to be a potential feedstock for biorefineries, with the end products serving as solid or liquid storage of energy.  Such microbial electrosynthesis is highly dependent on mediators to enable electron transfer from an electrode to a living cell. 
Formic acid (formate) is an electron mediator with a number of desired features for microbial electrosynthesis. However, wild-type organisms that can grow on formate are not suitable for industrial use due to slow growth rates and metabolism. 
Researchers at the Weizmann Institute have successfully engineered a formatotrophic E.coli. By combining systematical analysis with computational tools they screened numerous metabolic pathways and identified the optimized metabolic pathway that supports efficient formate-based growth. This innovative method enables the design of industrial strains of bacteria capable of efficient microbial electrosynthesis.

Applications


  • Biofuel and chemical commodities production.

Advantages


  • Efficient and robust storage of electrical energy.
  • Cost effective conversion of C1 compounds into sugars.

Technology's Essence


By engineering E. coli, the ”workhorse” bacteria used in biotechnology and enabling its growth on formate, researches at Dr. Ron Milo’s lab paved the way for efficient microbial electrosynthesis. The Researches started by investigating many metabolic pathways in order to discover how a model organism such as E.coli can be engineered for formatotrophic growth.  estimate which pathway is most suitable to support growth on formate each pathway was examined based on various criteria such as biomass yield, thermodynamic favorability, chemical motive force, kinetics and additional practical challenges. 
One short favorable pathway was consistently identified, that is the reductive glycine pathway. Furthermore.  Researches generated an isolated organism that is able to convert formate to pyruvate or glycerate.


Licensing Status


Pending

+
  • Prof. Ron Milo
1555
Albumin binding probe for extending the lifetime of drugs. Most polypeptide drugs, in particular non-glycosylated proteins of molecular mass less than 50 kDa, are short-lived species in vivo having circulatory half lives of 5-20 min. Drug association with endogenous albumin may be suitable for...

Albumin binding probe for extending the lifetime of drugs. Most polypeptide drugs, in particular non-glycosylated proteins of molecular mass less than 50 kDa, are short-lived species in vivo having circulatory half lives of 5-20 min. Drug association with endogenous albumin may be suitable for designing an approach to protract the action in vivo of, potentially, any short-lived peptide/protein drug. In doing so two principal obstacles must be overcome: (1) following its conjugation, the probe introduced into a peptide or a protein should have sufficient affinity to albumin to manifest prolonged action in vivo, and (2) in case such covalent introduction results in an inactive product, the latter should be capable to undergo slow reactivation at physiological conditions. The present invention relates to engineering prolonged-acting prodrugs employing an albumin-binding probe that undergoes slow hydrolysis at physiological conditions.

Applications


  • Prolonging half life of short-lined drugs

Advantages


  • Prolonging the action of the drug without effecting its activity 
  • A desirable pharmacokinetic pattern

Technology's Essence


Since albumin is long-lived in vivo, drugs and endogenous substances that tightly associate with it have lower clearance rates than that of the unbound substances, and exhibit prolonged lifetime profiles in vivo. The present invention is based on a concept according to which a long chain fatty acid (LCFA) like albuminbinding compound is covalently linked to a short-lived amino-containing drug to form a non-covalent drug conjugate capable of associating with albumin in vivo, i.e., a long-lived prodrug that gradually releases the pharmacologically active constituent. This approach has been successfully implemented with several drugs (e.g. insulin, exendin and gentamicin).

+
  • Prof. Matityahu Fridkin
  • Prof. Yoram Shechter
1610
A novel method for increasing Insulin content in pancreatic beta cells. In healthy individuals, Insulin is produced by beta cells of the pancreas. In people with type 1 diabetes mellitus (T1DM), these cells do not produce enough Insulin to effectively fine-tune blood sugar levels. In the US alone...

A novel method for increasing Insulin content in pancreatic beta cells.

In healthy individuals, Insulin is produced by beta cells of the pancreas. In people with type 1 diabetes mellitus (T1DM), these cells do not produce enough Insulin to effectively fine-tune blood sugar levels. In the US alone there are up to 3 million affected individuals with 30,000 new cases diagnosed each year. Worldwide, T1DM incidence has been increasing in recent years by 2% to 5%. Traditionally treated by multiple daily injections of recombinant Insulin, T1DM management represents a significant burden to both patients and the healthcare system. Recent data estimate that T1DM costs the US ~$15 billion annually in medical costs and lost income. Thus, novel therapeutic approaches to amplify Insulin production in diseased beta cells or to replace them entirely are in great need. The present technology describes a cell-based method to enhance beta cell differentiation and Insulin production by the downregulation of a pancreas-enriched microRNA.

 

Applications


  • Cell replacement therapy: directed differentiation of stem cells towards a beta cell fate followed by transplantation of these engineered cells into patients.
  • These methods can potentially be applied to other Insulin deficiency-related conditions such as diabetes mellitus type 2, metabolic syndrome and obesity.

Advantages


  • Simple and robust method for accelerating beta cell differentiation.
  • Cell base therapy for diabetes.
  • Increasing Insulin level.

Technology's Essence


A research team headed by Dr. Hornstein from the Weizmann Institute has discovered an essential role for microRNA-7 (miR-7), a microRNA that is highly and selectively expressed in the endocrine pancreas, in the regulation of beta cell differentiation. By down-regulating the expression of miR-7, the researchers were able to accelerate beta cell differentiation, and concomitantly to augment their Insulin production rate. The data gained from these studies can be further utilized in cell-based therapy applications to restore Insulin production in damaged beta cells, or alternately to replace these cells with stem cells coaxed to differentiate towards a beta cell fate.

 

+
  • Dr. Eran Hornstein
1639
Sphingolipid-peptide conjugates with potent anti-viral activity. According to the WHO, 34 million people around the world are afflicted with HIV, the causative agent of AIDS, with approximately 2.5 million new infections diagnosed each year. The development of new drugs against HIV has been the focus...

Sphingolipid-peptide conjugates with potent anti-viral activity.

According to the WHO, 34 million people around the world are afflicted with HIV, the causative agent of AIDS, with approximately 2.5 million new infections diagnosed each year. The development of new drugs against HIV has been the focus of intense research since its discovery. The market size of HIV-1 treatment is indeed significant with drug sales expected to rise from $13.3 bn in 2011 to $16.7 bn in 2020 in the Western world alone. Nevertheless, there is a highly unmet need for innovative HIV treatment approaches. One such approach is the design of early entry inhibitors that are able to block viral fusion and entry into the host cell. The present technology presents sphingolipid-peptide conjugates (sphingo-peptides) with a potent capacity to interfere with HIV viral fusion.

 

Applications


·         Design of novel HIV therapeutics.

·         Extension of half-life of current HIV fusion inhibitors.

·         Topical blockers of viral transmission.

 


Advantages


  • Blocking viral entry prevents all subsequent intracellular steps, most importantly viral genome integration.
  • Sphingolipid conjugates improve efficacy and half-life of current HIV fusion inhibitors.
  • Sphingopeptides were shown to be effective against certain drug-resistant strains.
  • A unique mode of action that reduces the likelihood of developing resistant strains.

Technology's Essence


The first step in the life cycle of enveloped viruses such as the HIV-1 is entry into their host cells by membrane fusion. Therefore, the dynamic process of HIV fusion and entry represents a valid target for rational drug design. A team of researchers at the Weizmann Institute has developed unique sphingolipid-peptide conjugates that block the fusion of the HIV virus to its host cell membrane. Remarkably, the sphingolipid moiety endowed potent anti-viral activity to otherwise poorly and nonactive peptides. Moreover, the sphingo-peptide inhibitors were shown to be highly effective against both wt as well as drug-resistant HIV strains.

+
  • Prof. Yechiel Shai
1592
Novel genetically modified crops resistant to environmental friendly herbicides.Weeds are considered to be one of the major causes for crop losses by farmers. It is estimated that weeds cause an overall 12% reduction in crop yields or $33 billion in lost crop annually. With the advent of biotechnology...

Novel genetically modified crops resistant to environmental friendly herbicides.Weeds are considered to be one of the major causes for crop losses by farmers. It is estimated that weeds cause an overall 12% reduction in crop yields or $33 billion in lost crop annually. With the advent of biotechnology, several genetically modified (GM) crops were developed that are insect-resistant or herbicide-tolerant - to make pest and weed control easier for farmers. The major trait sought in GM crops is herbicide tolerance as one component of the weed management system. However, use of herbicide resistant crop does not fully protect from weeds, since herbicide-resistant weeds appear and propagate. The appearance of herbicide resistant weeds warrants the development of novel herbicide-tolerant crops. The present technology provides a method for introducing into plants the artificial resistance toward herbicide amino acids, which are not toxic to humans.

Applications


  • Conferring to transgenic plants resistance to the presence of phytotoxic non-protein amino acids.
  • Herbicide tolerance to meta-tyrosine can be expanded into different types of crops such as wheat, cotton, alfalfa, etc.
  • Development of additional non-protein herbicidal amino acids and crops resistant to these compounds.

Advantages


  • Weed control can be performed with non-hazardous, environment-friendly herbicides.
  • Genetically-modified resistant crops enable the use of non-selective herbicides, allowing for more robust weed management.

Technology's Essence


The method is based on incorporation into the plant’s organelles (mitochondria and chloroplast) bacterial aaRS possessing editing activity toward a given toxic amino acid (aaRS in organelles usually lack such activity). As a proof-of-concept, a genetically modified Arabidopsis thaliana was created, capable of growing in the presence of exogenous meta-tyrosine (a known herbicide) at concentrations that have a deleterious effect on unmodified plant. However, the method is not limited to Arabidopsis thaliana or to m-tyr amino acid only.

+
  • Prof. Mark Safro
1615
A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and...

A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.
These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and Suzuki and Heck coupling reactions (Pd coated).
Since catalytic chemical reactions are at the heart of many processes and industries, and efficient catalysis is essential for both economic and environmental reasons, this development of a new catalytic platform bears a potential to influence many diverse markets.

Applications


  • New and efficient Pd-based catalysts for diverse reactions.
  • New and efficient crude oil HDS catalysts.
  • New and efficient wastewater purification catalysts.
  • Production of activated hybrid WS2 nanotubes with new properties.
  • Tailoring catalytic nanotubes with different band gaps adjusted to different activation and catalysis applications.

Advantages


  • Formation of highly active catalytic nanotubes
  • Utilization of the nanotubes' very large surface area
  • Recruiting specific nanotube semiconducting characteristics for special catalysis requirements

Technology's Essence


The invention involves deposition of metal nanoparticles on prepared WS2 nanotubes (INT-WS2) in a two stage process involving Pd-nanocrystallites assisted activation followed by electroless plating.
In this process WS2 nanotubes are synthesized according to known procedures. The nanotubes are then covered by metal nanoparticles in a simple and straightforward procedure resulting with highly active nanotubes which can be utilized as catalysts for various chemical reactions.
This new hybrid technology opens the way to a new family of highly efficient, tunable catalysts; the INTs large surface area, specific band gap design and choice of metal result in an ability to produce unique tailor-made catalysts, applicable to many different industries. 

+
  • Prof. Tenne Reshef
  • Prof. Tenne Reshef
1664
Neuroinflammation is well established as a key secondary injury mechanism following CNS trauma, such as traumatic brain/spinal injury or ischemic stroke, and it has been long considered to contribute to the damage sustained and fatal outcomes following brain injury. Early inflammatory events enhance...

Neuroinflammation is well established as a key secondary injury mechanism following CNS trauma, such as traumatic brain/spinal injury or ischemic stroke, and it has been long considered to contribute to the damage sustained and fatal outcomes following brain injury.
Early inflammatory events enhance brain damage, yet they provide the framework for later inflammatory events that enhance tissue remodeling and are crucial for tissue recovery.
A major unmet need in the field is a targeted treatment that would down regulate the damaging events of inflammation, while maintaining reparative functions. 
Altering between CNS microglia pro and anti-inflammatory activation states is at the core of injury-induced neuroinflammation and presents an opportunity to specifically tilt the balance towards anti-inflammatory and repair processes.
The present discovery elucidates the mechanisms that lead to injury-induced microglia over-activation and proposes IFN-? as a therapeutic strategy to induce microglia resolving state and relive inflammation. 

Applications


Anti-inflammatory treatment following CNS injury

Advantages


  • Targeted therapy – avoids general immuno-suppressive side effects
  • Based on a well understood molecular mechanism
  • May allow relatively large therapeutic window – according to proof-of-concept  preliminary experiments

Technology's Essence


Resident microglia are the major specialized innate immune cells of the central nervous system (CNS). During the process of wound healing or pathogen removal, there is an induction of the microglia active pro-inflammatiry phenotype (M1), leading to a transient inflammatory response, which is resolved via local conversion to the M2 anti-inflammatory phenotype.  Following acute injury, microglia fail to acquire an inflammation-resolving phenotype (M2-like phenotype) in a timely manner, often resulting in self-perpetuating local inflammation and tissue destruction beyond the primary insult.
Prof. Schwartz and her team uncovered the mechanisms that lead to injury-based inhibition of the M1 to M2 phenotype switch.  They showed that the capacity to undergo pro- to anti-inflammatory (M1-to-M2) phenotype switch is controlled by the transcription factor Interferon regulatory factor-7 (IRF7).  Their results demonstrate that restoring Irf7 expression by IFN-? (a known IRF7 activator) reactivates the circuits leading to M2 conversion by improving the resolution of pro?inflammatory cytokines expressed by microglia ex vivo and in vivo, following acute CNS insult.
Importantly, the anti-inflammatory activity of IFN-? was demonstrated in-vivo, when administrated 24h following the primary insult, proposing a relatively large therapeutic window.

+
  • Prof. Michal Schwartz-Eisenbach
1564
A new recyclable size-selective filtration device. Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with...

A new recyclable size-selective filtration device.

Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with well-defined sizes, which have application in the fields of optoelectronic devices, biomedicine, materials, and catalysis.

Researchers at the Weizmann Institute have fabricated supramolecular ultrafiltration membranes that can be used for filtration and size-selective chromatography of nanoparticles. The membranes are composed of a self-assembled three-dimensional fibrous network that is held together by reversible non-covalent interactions.

The membranes are robust, easy to fabricate, and recyclable.

Applications


  • Size-selective separation of semiconductor and metal nanoparticles
  • Uniformity and monodispersity of nanoparticles in solution.
  • Size exclusion chromatography of nanoparticles in the sub-5-nm size regime.

Advantages


  • Efficient and inexpensive

  • Fast and easy fabrication

  • Recyclable

  • Self-assembled

  • Dual application regime: filtration and/or chromatography


Technology's Essence


The recyclable supramolecular membranes are formed from unique perylene derivatives that are large and flat aromatic molecules. These molecules are insoluble in water and form a 3-D network over a solid support, which can be used for the separation of nanoparticles.

The filters can be subsequently recycled from this mixture using an organic solvent (e.g. dichloromethane), which separates the membrane material from the water-soluble nanoparticles, and reused without loss of performance.

This material is hence highly attractive for application in the field of nanotechnology.

+
  • Prof. Boris Rybtchinski
1643
Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due...

Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due to their participation in the pathology of diabetes. Various techniques have been suggested to accomplish this step, yet efficient and robust isolation of beta cells remains a challenging task.
The present invention provides an efficient tag-free isolation method for pancreatic cell sub-types, based on separation according to a newly identified collection of surface markers. These markers are tightly correlated with specific functions, such as insulin production, ensuring enrichment of the desired functionality.
Probing against the newly identified markers in a combinatorial manner allows high degree of purity without compromising the yield, significantly increasing the amount of purified cells. Finally, the method is compatible with both extracts of pancreatic tissues and stem cells derived cultures, the latter set up high expectations in the diabetes therapy field.

Applications


A kit for isolation of distinct pancreatic cell subtypes

Advantages


  • High purity without compromising the yield of isolated cells.
  • Compatible with a variety of heterogeneous sources including cells extracted from pancreatic tissue, committed lineages of stem cells and cultures of differentiated stem cells.                                               

Technology's Essence


Using an innovative high throughput screen, linking specific cell surface markers with a particular functionality (e.g. insulin production), a collection of markers not previously identified in connection with pancreatic cells or with diabetes was found to be consistently expressed in human islets.
Cell isolation according to the selected markers is performed by exposing the heterogeneous source of cells to specific antibodies that recognize these markers, followed by a choice of sorting techniques such as fluorescence activated cell sorting (FACS).
The innovative concept of this method is the use of marker combinations, iterating the selection. Only cells that express both markers will be sorted out, thus increasing specificity and reducing contaminations. This increased specificity gives rise to a higher degree of purity without compromising the yield, resulting in larger amounts of isolated cells.
By applying the initial screen in yet another iteration, additional markers can be added to the selection, to refine the isolation procedure. 
As this method is generally applicable to the purification of mature as well as pluripotent or partially differentiated beta cell progenitors, it holds great potential for the isolation of clinically relevant cells for treatments of diabetes.

+
  • Prof. Michael Walker
  • Prof. Michael Walker
1536
Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.   Cellulosic biomass...

Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.

 

Cellulosic biomass pretreated (e.g. with acid) under ideal conditions, still requires very high enzyme doses to provide efficient bioconversion.

The cost of enzymes and pretreatment is a major hurdle in the production of low-cost cellulosic biofuel, competitive with that of fossil fuels or ethanol produced from corn or sugarcane.

 

The complex structure of cellulosic materials is built to resist bacterial hydrolytic enzymes. The cooperation of many types of carbohydrate-active enzymes is required for effective degradation. By designing synthetic cellulosomes, researchers at The Weizmann Institute enhance synergy between carbohydrate-active enzymes to achieve remarkable degradation rates. Their discoveries can lead to highly efficient conversion of cellulosic biomass, and thus have a major impact in the field of food production and sustainable energy.

Applications


  • High-yield, cost-effective conversion of plant cell wall biomass into soluble sugars for the food industry and the production of biofuels and biochemicals.

Advantages


  • Bio-engineered cellulosomes exhibit synergistic degradation activity of natural substrates compared to the combined action of the free wild-type enzymes.

Technology's Essence


The invention involves the conversion of enzymes (cellulases and xylanases) from the free mode to the cellulosmal mode by attachment using a recombinant dockerin molecule. The dockerin-bearing enzymes are incorporated into designer cellulosomes by interacting with a matching cohesion-containing chimeric scaffoldin (scaffoldin subunits contain the cohesin modules that incorporate the enzymes into the cellulosome complex via their resident dockerins). This approach has generated over two fold enhancement of synergistic hydrolysis on plant cell wall cellulosic biomass. These results create new possibilities for designing superior enzyme compositions for degradation of complex polysaccharides into simple soluble sugars.

+
  • Prof. Edward A. Bayer
1596
A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a...

A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a light beam requires fast, accurate, and simple measurement techniques to fully characterize it’s properties.Currently, the ability to measure light polarization exists only qualitatively and at only one specific point in a light beam. Our scientific team has developed a new method to measure changing light polarizations in real-time. 
Our demonstrated system presents a simple way to continuously measure and quantify light polarizations in real-time, throughout the entire length of a light beam. This method has the potential to set a new industry standard, and could lead to a number of applications that were previously not possible.
 

Applications


  • Molecular imaging
  • Medical and industrial lasers
  • Non-destructive testing
  • Analytical chemistry
  • Fiber-optic communications
  • Cryptography
  • Astronomy

Advantages


  • Proved accuracy
  • Simple technique
  • Compact configuration
  • Incorporate into existing equipment
  • Can measure fully polarized, partially polarized, and un-polarized light
  • Two modes of operation:   Space-variant polarization measurements and Wavelength-variant polarization measurements

Technology's Essence


Our polarization measurement technique is based on splitting an input light beam into six parallel beams, each having a predetermined shift in the polarization state with respect to the other beams. The beam components are simultaneously detected using a pixel matrix, such as a CCD camera, to determine their intensity distribution. From this, the polarization state distribution along the cross-section of the input optical beam is determined and we can calculate the Stokes parameters, a set of values which defines polarized light. This allows us to characterize and quantify fully polarized, partially polarized, and un-polarized light at every point in the beam in real-time, with either static or dynamic polarization states. Our method can be applied for two conditions of varying polarizations – changing with position (space-variant) or changing in color (wavelength-variant).

+
  • Prof. Nir Davidson
1618
A novel method is disclosed here for boosting the immune response, useful not only for the treatment of microbial and chronic viral infections, but also for activating the immune system against cancer cells. TLR-4 is a central player in the innate immune system as it specifically recognizes...

A novel method is disclosed here for boosting the immune response, useful not only for the treatment of microbial and chronic viral infections, but also for activating the immune system against cancer cells. TLR-4 is a central player in the innate immune system as it specifically recognizes lipopolysaccharide (LPS), the major cell wall component of Gram-negative bacteria, and activates the immune system. Newly developed peptides derived from the N-terminus of a TLR-4 trans-membrane domain are capable of activating TLR-4 mediated immune response, thus useful both as stand-alone treatments and as vaccine adjuvants, increasing the immunogenicity of an antigen in a vaccine. Taken together, the newly developed peptides are useful for the treatment and prevention of a large variety of infections, such as microbial (e.g. Salmonella, Escherichia, Pseudomonas), viral (including HIV, Hepatitis and Influenza) and fungal infections. Further, they are useful in the treatment and prevention of a wide variety of cancers.

Applications


  • Treatment for a wide variety of infectious diseases and cancers.
  • Prophylaxis for a wide variety of infectious diseases and cancers, as an adjuvant administered together with specific antigen.

Advantages


  • Treats a wide variety of bacterial, viral and fungal infections.
  • Suitable both as a treatment and prophylaxis.
  • Boosts the endogenous immune system
  • Peptides are easy to synthetize and purify
  • Patient-friendly administration, either systemic or local.

Technology's Essence


The technology is based on the discovery that peptides derived from the N-terminus of a TLR-4 TM domain or their analogs are capable of activating TLR-4 mediated immune response. These peptides activate TLR-4 receptor, possibly by dimerizing within the cell membrane and stabilizing the TLR-4 dimer. Through TLR-4 activation, these peptides activate macrophages to secrete TNF-alpha, thereby stimulating the immune system. In addition, the ability of these peptides to modulate the immune system's innate response renders them useful as vaccine adjuvants, increasing the immunogenicity of an antigen in a vaccine.

+
  • Prof. Yechiel Shai
1577
A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of...

A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of desulfurization.Techniques to capture SO2 from coal-burning plants have not changed in nearly 40 years. Once implemented, the technology presented here can become significantly more efficient and environmentally friendly than existing techniques, since no slurry waste is created from the wet sorbents typically used to capture SO2.The novel system can selectively recycle SO2 into useful sulfur-based compounds which can be resold; utilizing a carbonate eutectic melt this procedure can also be aimed to generate elemental sulfur, an inert and non-toxic compound which can be stored long-term until required for further use.In a world anxious over climate change, yet in demand of more energy, solutions should have the capacity to be implemented quickly and incorporated into existing infrastructure. This technology offers the potential to tackle several problems with one simple solution.

Applications


Integrate into industrial fossil-fuel burning facilities which include:

  • Power plants
  • Cement factories
  • Steel foundries

Advantages


  • Implement into existing infrastructure and reduce reagents’ costs compared to current techniques
  • Significantly higher efficiency and elimination of hazardous waste by-products
  • Potential generation of revenue from recycled Sulfur waste.

Technology's Essence


The significant enhancement of this scrubbing technique is the sequentially operable scrubbing zone and regeneration zone, which communicate with one another via a molten eutectic mixture of lithium, sodium and potassium carbonates. In the scrubbing zone, an ingress flue gas interacts with the molten carbonates, resulting in chemical absorbance of the SO2 and in discharge of reaction gases. In the regeneration zone, either chemical or electrochemical melt regeneration takes place resulting in formation of sulfur containing vapor which is cooled down for converting the sulfur-containing vapor into a liquid and solid phase for a further collection and utilization.The technology developed by Prof. Igor Lubomirsky and his team introduces three essential improvements over past techniques: (i) the removal of sulfate from the melt is achieved at expected operating temperatures of an industrial scrubbing tower (480-550°C), which drastically reduces corrosion of metal components, (ii) the reduction of sulfates by CO gas rather than by carbon powder represents a simpler, one-step process, which results in a high reduction rate and allows for the reaction chamber to be small (few tens of m3 for a 1GW coal plant), and (iii) the removal of sulfate in the form of COS, rather than H2S, provides considerable freedom in choosing the final sulfur product – either sulfuric acid or elemental sulfur.

 

+
  • Prof. Igor Lubomirsky
1451
A monoclonal antibody against GluR3B, a peptide found in epilepsy patients, and especially in patients suffering from intractable, resistant forms of the disease, could be used in diagnosis kits as well as in drug development for this form of "autoimmune epilepsy".

A monoclonal antibody against GluR3B, a peptide found in epilepsy patients, and especially in patients suffering from intractable, resistant forms of the disease, could be used in diagnosis kits as well as in drug development for this form of "autoimmune epilepsy".

Applications


1. Producing a new kit for epilepsy patients, able to detect GluR3b Ab's and thus GluR3-mediated neuropathology
The anti GluR3B monoclonal Ab could be used for developing a new diagnostic kit to detect neuropathogenic human anti-GluR3B in serum and CSF of patients with epilepsy. The patient's GluR3B Ab's would compete and displace the GluR3B mAb's of its ligand: the GluR3B peptide. The presence of GluR3B Ab's in a patient, would indicate that autoimmunity against GluR3 may underlie the patient's neuropathology and a) would suggest the initiation of an immune-based therapy b) prevent useless and dangerous brain surgery c) prevent non-effective medication.

2. Drug design for GluR3-mediated neuropathology
The unique GluR3B monoclonal antibody could be used to screen a potential drug for 'Autoimmune Epilepsy'. The GluR3B monoclonal antibody could be used to screen for a molecule (i.e. Anti-idiotypic antibodies) that would block the GluR3 autoantibodies and their detrimental neuropathological effects.

3. Research tool for a kaleidoscope of purposes, including:

  • Detection of the GluR3 glutamate receptor subtype on various target cells.
  • Studies of the properties of the Glutamate/AMPA receptor subtype 3.
  • Studies of the Glutamate-liked agonist activity of the GluR3B monoclonal antibody, and of the GluR3 receptor ion channel gating properties.
  • Production of an animal model of 'Autoimmune Epilepsy'.
  • Studies of neuronal death caused by binding of the GluR3 autoantibody to glutamate/AMPA receptors.
  • Studies of behavioral impairments caused by binding of the GluR3 autoantibody to glutamate/AMPA receptors.

  • Technology's Essence


    Scientists from the Weizmann Institute of Science have discovered a unique anti-GluR3B monoclonal antibody Glu149/29/61.

    +
    • Prof. Vivian I. Teichberg
    • Prof. Vivian I. Teichberg

    Pages