You are here

Category
Technology Name
Briefcase
Scientist
1556
Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars. Modern...

Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars.

Modern agriculture faces limited arable land and climate changes. Carbon fixation under these conditions will become a significant growth limiting factor. The proposed solution provides the ability to enhance crop yields using the same expanse of land.

The novel technology presents alternative synthetic carbon fixation pathways that were discovered by harnessing a systems biology approach. These pathways are predicted to harbor a significant kinetic advantage over their natural counter parts, making them promising candidates for synthetic biology implementation.

Applications


  • Synthetic organisms utilizing this revolutionary technology can offer higher carbon fixation rates as compared to natural alternatives allowing:
  • Superior rate of biomass generation, providing cost effective feedstock for the production of biofuels.
  • Enhanced food production via increased crop yields.

Advantages


  • Minimal thermodynamic bottlenecks and superior kinetics over natural counterparts.

Technology's Essence


The productivity of carbon fixation cycles is limited by the slow rate and lack of substrate specificity of the carboxylating enzyme, RuBisCo. In his discovery Dr. Milo addresses the inefficiency of the carbon fixation process through an alternative cycle that is predicted to be two to three times faster than the Calvin–Benson cycle, employing the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle.

A computational strategy was applied, comparing kinetics, energetic and topology of all the possible pathways that can be assembled from all ~4,000 metabolic enzymes known in nature.

The results suggest a promising new family of synthetic carbon fixation pathways.

+
  • Prof. Ron Milo
1611
Novel HIV-derived peptides for the treatment of T-cell related disorders.Autoimmune diseases affect millions of individuals worldwide and the cost of these diseases, in terms of actual treatment expenditures and lost productivity, is measured in billions of dollars annually. Uncontrolled activation of...

Novel HIV-derived peptides for the treatment of T-cell related disorders.Autoimmune diseases affect millions of individuals worldwide and the cost of these diseases, in terms of actual treatment expenditures and lost productivity, is measured in billions of dollars annually. Uncontrolled activation of T cells is a hallmark of many autoimmune diseases; prominent among these are rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and Type I diabetes. T cells also play a cardinal role in the rejection for organ transplantation or graft versus host disease. Currently available therapies such as immunosuppressive drugs suppress the patient's entire immune response, thereby increasing the risk of infection, and can cause toxic side effects to non-lymphoid tissues. The development of new immunosuppressive agents capable of selectively inhibiting the activation of T lymphocytes with minimal side effects is therefore desirable. The present invention provides novel peptides endowed with immunosuppressive activity, for the treatment of T-cell related conditions such as autoimmune, inflammatory and graft rejection disorders.

 

Applications


Treatment of various T-cell mediated pathologies including:

  • Autoimmune diseases.
  • Inflammatory disorders.
  • Graft rejection and graft-versus-host disease (GVHD).

 


Advantages


  • The peptides exhibit minimal toxicity.
  • The peptides are about 20 times more potent than the strongest peptide reported from the HIV envelope proteins.
  • The peptides are less hydrophobic than other gp41-derived peptides and as such are more readily soluble in aqueous solution.

Technology's Essence


A team of scientists from the Weizmann Institute has developed peptides, derived from the ectodomain of the HIV gp41 envelope protein, that are able to effectively inhibit T cell activation. These peptides are 20-fold more potent as immunosuppressive peptides compared to other HIV-derived immunosuppressive peptides. The novel gp41-derived peptides robustly attenuated autoimmune disease in vivo, as shown in an experimental autoimmune encephalomyelitis (EAE) animal model, while demonstrating minimal toxic effect in both in vivo and in vitro studies. Furthermore, the novel peptides are remarkably less hydrophobic than other HIV-derived peptides, and therefore can readily dissolve, facilitating their administration as therapeutic agents.

+
  • Prof. Yechiel Shai
1640
Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The...

Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The present invention provides highly selective targeted therapy against MMP-7, which is strongly associated with aspects of cancer development such as angiogenesis and metastasis.
The innovative concept leading to this high selectivity is immunization with both a synthetic metal-protein mimicry molecule, previously developed by the present inventors, followed by the metalloenzyme itself (e.g. MMP-7). The resulting antibody exhibits exceptional degree of specificity towards MMP-7 over other MMPs.
The present technology offers an opportunity to re-introduce improved MMP-targeting agents to the cancer therapeutics market, in particular aggressive cancers that face a major unmet medical need. 

Applications


  • Therapy for MMP-7 associated diseases
  • Diagnostic tool for MMP-7 associated diseases

Advantages


  • Highly selective
  • Safe – avoids adverse effects that are associated with broad spectrum MMP inhibitors.
  • Efficient – targeting a physiological active conformation of the enzyme

Technology's Essence


The present technology is based on a previous invention that was developed in Prof. Sagi's lab, of synthetic metal-protein mimicry molecules that mimic the conserved structure of the metalloenzyme catalytic zinc-histidine complex within the active site of each MMP enzyme.
These molecules were shown to be powerful immunogens in the generation of highly selective MMP antibodies since they recognize both electrical and structural determinants residing within the enzyme active site. The potential of this method to successfully generate MMP-targeting therapeutics was shown for MMP-9/2 inhibitory antibodies in mouse models of inflammatory bowel disease.
Prof Sagi and her team now take this invention a step further to achieve even higher specificity. They show that immunizing with the mimicking molecules described above, followed by immunization with the metalloenzyme itself increases selectivity further.   
Implemented for MMP-7-targeting, this approach yielded an antibody with a 5 fold lower Ki towards MMP-7 than towards other MMPs (e.g. MMp-2 and MMP-9).


 

+
  • Prof. Irit Sagi
  • Prof. Irit Sagi
1593
The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders.  To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools...

The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders. 
To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools is to allow individuals identification while maintaining sufficient resolution for accurate tracking.
The present technology provides a system that utilizes fluorescent fur dyes to differentially mark and track individuals within a group. Using a sensitive color camera and a newly designed tracking algorithm, behavior of groups may be recorded and analyzed with high temporal and spatial resolution.   
The technology further offers a method for characterizing the group’s interactions using the maximum entropy model.

 

Applications


 


Advantages


  • High spatial and temporal resolution – enabled by sensitive color video tracking.
  • Enables high detailed analysis of individual behavior within the group.
  • Suitable for community study of groups - limited only by available fur dyes.
  • Compatible with long-term analysis.
  • Simple, cost effective.
  • Minimal suffering and improved animal welfare.

  • Technology's Essence


    The present technology takes advantage of the fact that mice are nocturnal (active at night) animals, to mark their fur with different fluorescent dyes. Under ultraviolet light, the mice can be accurately and automatically tracked, over a number of days. As the mice are allowed to move freely in an interesting arena for exploration containing ramps, nest boxes and barriers (Figure 1), their trajectory and behavior are recorded using a sensitive color camera.
    The system further includes an image processing module which analyses the recorded images, calculates a spatiotemporal model and the nature of social interactions between individuals.
    Combining detailed behavioral and genetic analysis ate the level of individuals, in association with group analysis, may enable the identification of genetic and neuronal correlates of complex social interactions. 

    +
    • Prof. Alon Chen
    1616
    Existing treatments against cancer are non-sufficiently selective. Immunotherapy based treatment offers highly selective and efficient solution to this problem. A promising approach in Immunotherapy is adoptive cell therapy (ACT). In ACT, therapeutic lymphocytes are administrated to patients in order...

    Existing treatments against cancer are non-sufficiently selective. Immunotherapy based treatment offers highly selective and efficient solution to this problem.
    A promising approach in Immunotherapy is adoptive cell therapy (ACT). In ACT, therapeutic lymphocytes are administrated to patients in order to treat a disease. In this process antibody-type cells are generated ex vivo, and then infused to the patient. By this technology the cells can be redirected against specific tumors via genetic engineering, using chimeric receptors.
    Currently ACT is logistically and economically challenging since it is limited by the used of the patients’ own cells. Another key concern is safety, due to the danger that the allogeneic cells will be rejected by the patient, or will attack the patient.
    In cancer, use of tumor specific, chimeric receptor redirected allogeneic T cells can transform ACT into a standardized, off-the shelf therapy. Overall this method proposes a safe and effective adoptive therapy using allogeneic cells while avoiding the use of bone marrow transplantation (BMT).

    Applications


    • Cancer immunotherapy

    Advantages


    • Off the shelf, standard treatment
    • Safe
    • Effective
    • No bone marrow transplantation (BMT) is required

    Technology's Essence


    A novel approach for adoptive immunotherapy using fully MHC-mismatch allogeneic T cells. These cells are redirected with tumor specific non-MHC-restricted antibody-based chimeric antigen receptor (T-bodies) in the absence of Graft-versus-host disease (GVHD). In order to create a standardize treatment, the redirection of T cells can be done through an antibody-based chimeric antigen receptor (CAR), thus creating ‘universal effector T cells’. This is based on a combination of of MHC-mismatched allogeneic T-cells with an MHC unrestricted chimeric antigen receptor. These cells would recognize their target independently of MHC restriction, therefore applied as an ‘off-the shelf’ immunotherapy. Regarding the second challenge of avoiding GVHD, by using a controlled lymphodepletion the researchers were able to create therapeutic window during which the allo-T-body cells could destroy the tumor before being themselves rejected.

    +
    • Prof. Zelig Eshhar
    1571
    A novel social behavior monitoring system automatically tracks the precise location of each animal at excellent temporal resolution. This innovative technology provides simultaneous identification of complex social and individual behaviors via an integration of RFID and video surveillance. There is a...

    A novel social behavior monitoring system automatically tracks the precise location of each animal at excellent temporal resolution. This innovative technology provides simultaneous identification of complex social and individual behaviors via an integration of RFID and video surveillance.

    There is a rapidly growing interest in detecting the molecular substrates of social behavior. This interest is driven by the vast implications of such understanding in both research and the pharmaceutical industry, since some prevalent pathological conditions are mainly characterized by a behavioral deficit or abnormality.

    It is extremely challenging to quantify social behavior in a reliable manner. Existing methods struggle to find a balance between objectively quantifying behavior on one hand while enabling a natural, stress-free behavioral estimation on the other hand. Currently, researchers work in a strictly controlled and constrained environment that is estranged and stressful to the animals. The outcome is a highly contaminated measurement of natural behavior. This difficultly becomes increasingly complex when more than one animal is involved as often applied in social behavioral studies.

    Applications


    • Rigorous characterization of social organizational deficiencies and evaluation of their severity in animal and human models (for example in autism).
    • An optimized system for estimating the efficacy of clinical treatments.

    Advantages


    • Long-term tracking of unlimited number of simultaneously studied animals.
    • Machine based, hence objective and automated quantification of behavior.
    • Excellent spatiotemporal resolution in semi natural environment
    • Flexible- the number, size and distribution of the RFID antennas can be adjusted with different enclosure dimensions.
    • Can be applied from Individual behavioral profile or pairs interactions up to collective social organization of groups.
    • Systematic analysis and classification of basic locomotion up to more complex social

    Technology's Essence


    Researchers at the Weizmann institute developed a method for tightly controlled monitoring of social behavior in a semi-natural environment. They used integrated and synchronized chip reporting and continuous video postage to precisely locate each individual animal. Using this automated monitoring which provides an exceptional temporal resolution they achieved correct identification of numerous basic individual behaviors as well as complex social behaviors. Such complex behavioral profiles set the basis for subsequent analysis which reveals the formation of a social hierarchy.

    +
    • Dr. Tali Kimchi
    1644
    Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices. The present innovation is based on...

    Computer memory and storage are among the most critical components of today’s consumer electronics and computer technology. Currently available memory and storage technologies have inherent limitations that confine the capacity and speed of access to memory devices.

    The present innovation is based on Chiral Induced Spin Selectivity (CISS) effect that was established experimentally and theoretically in the last decade, and allows for production of inexpensive, high-density universal memory-on-chip devices, that don’t require the use of permanent magnets.

    Applications


    ·         Inexpensive, high-density universal memory-on-chip devices

    ·         The technology can be used as superior alternative for both Random Access memory and Flash memory

    ·         Surface-controlled spintronic devices

    ·         Logic and data processing


    Advantages


    ·         Up to 70 times more storage on the same physical size

    ·         Up to 100 times lower energy consumption

    ·         Si-Compatible

    ·         High density (can reach Si technology limit)

    ·         Estimated low cost

    ·         Overcomes limitations of other magnetic-based memory technologies


    Technology's Essence


    Ferromagnets can be magnetized either by external magnetic fields or by spin polarized current. However, the current density required for inducing magnetization is extremely high and significantly affects the device’s structure and performance. The newly discovered CISS effect allows for magnetization switching of Ferromagnets, which is induced solely by adsorption of chiral molecules, where much lower current density is sufficient to induce the magnetization reversal. Chiral Memory technology uses the CISS effect for spin selectivity instead of the common ferromagnetic-based spin filters. This allows, in principle, the memory bit to be miniaturized down to a single magnetic nanoparticle or a nano-scale domain. The operation principle of the device relies on the spin-selective transmission of electrons through organic chiral molecules to the ferromagnetic layer of the device, which results in the magnetization of this layer and efficient storing of bits of information. The magnetization switching by local adsorption of chiral molecules eliminates the need for a permanent magnet.

    +
    • Prof. Ron Naaman
    1540
    A novel TMS method that eliminates the restrictions of angular positioning, exciting more neurons per area of stimuli, in further areas of the brain.   Current TMS methods and TMS methods under development, suffer shortcomings of a highly specific directional electric field, which demands a precisely...

    A novel TMS method that eliminates the restrictions of angular positioning, exciting more neurons per area of stimuli, in further areas of the brain.

     

    Current TMS methods and TMS methods under development, suffer shortcomings of a highly specific directional electric field, which demands a precisely targeted application. Current methods are extremely sensitive to the movements of the patient or the device. Once a position is established the patient must remain still for the treatment. Furthermore, stable and reproducible positioning is costly and time-consuming.

     

    Researchers at the Weizmann Institute developed a method to induce a rotating magnetic field in TMS applications, yielding optimal targeting of brain regions where correct orientation cannot be determined (e.g. via motor feedback). This innovative method can also stimulate brain regions with no preferred axonal orientation, and open new applications in diagnostics and research in neuronal cultures and rats, previously unresponsive to conventional TMS.

    Applications


    • Accurate, cost-effective, enhanced rfTMS devices for treatment of depression, migraines and other mental disorders.
    • A novel model system in rats and neuronal cultures for development of diagnostics and therapeutics.

    Advantages


    • Exciting more neurons in the same area of stimulation
    • Accessing areas in the brain that are currently unresponsive to conventional TMS.
    • No positional restrictions
    • Requires less voltage

    Technology's Essence


    The theory behind this technology involves the understanding that neural response is direction dependent. Neurons whose axons are parallel to the magnetic field will be most significantly stimulated. Additionally, factors of magnetic field, rise time and neural cooperatively play a role. All these are addressed by a rotating magnetic field creating anisotropy of angles that match the neurons’ orientation and the excitation of dendrites by applying pulses of the order of 1ms. This solution offers greater control over the TMS system.

    +
    • Prof. Elisha Moses
    1597
    Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or...

    Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or electrostrictive. Modern inorganic piezoelectric devices are used for a wide variety of applications from inexpensive speakers and headphones, to sophisticated sonar transducers. Over the last several decades, these materials have become highly reliable and technologically mature, but the magnitude of the mechanical stress they can generate in response to an input electric signal has reached an upper limit.This innovative technology applies Gadolinium-doped Cerium Oxide (Gd-doped CeO2) to piezoelectric and electrostrictive devices and will enable high-performance electromechanical materials with output capabilities an order of magnitude above existing solutions, in excess of 500 MPa. This could facilitate the next generation of many consumer and industrial electronic devices.

    Applications


    • Wide range of personal electronic devices
    • Industrial and fine electronics – specifically powerful acoustic transducers

    Advantages


    • Generate large displacement and large stress simultaneously
    • Sensitive and tunable properties

    Technology's Essence


    In piezoelectric devices, stress develops due to the deformation of a non-centrosymmetric lattice under the application of an electric field. In commercial electrostrictors, or materials with centrosymmetric lattices and very large dielectric constants, an external electric field distorts the unit cells of the lattice, rendering them locally non-centrosymmetric. In both cases, the electromechanical stress develops due to a small displacement of atoms within each unit cell. Increasing the magnitude of the response would lead to more powerful actuators, and permit a decrease in the operating voltage; therefore, the search for novel mechanisms of electromechanical response in solids remains an important objective for both fundamental and applied science.

    We have demonstrated that Gd-doped CeO2, specifically Ce0.8Gd0.2O1.9, can generate stress an order of magnitude greater than the best electromechanically active materials. The large stress develops in response to the rearrangement of cerium-oxygen vacancy pairs and their local environment. This effect is expected to be two-fold; i) an applied electric field results in strain and stress directly, and ii) application of the external electric field affects the elastic modulus of Ce0.8Gd0.2O1.9 by suppressing the chemical strain effect. This is a fundamentally different mechanism than materials currently in use. In this view, Gd-doped CeO2 is representative of a new family of high-performance electromechanical materials.

     

    +
    • Prof. Igor Lubomirsky
    1621
    Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases,...

    Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases, age-related macular degeneration and atherosclerosis. The global market for angiogenesis stimulators and inhibitors is forecast to reach ~US $50 billion by the year 2015. Most of the currently marketed angiogenesis regulators, such as Avastin, typically display modest efficacy and therefore further highlight the great need for the development of novel therapeutics. The current technology presents a novel method to treat angiogenesis-related disorders by modulating apolipoprotein B (ApoB).

    Applications


    • ApoB is a potential therapeutic target for the treatment of cancer and other non-neoplastic diseases.
    • ApoB levels may serve as a biomarker for cancer metastasis.

    Advantages


    • The anti-angiogenic effect of LDL administration was demonstrated in vivo, in zebrafish models, as well as in vitro, in relevant human cells lines.
    • Regulation of ApoB levels may be applied to treat a broad range of angiogenesis-dependent diseases.
    • Detection of ApoB levels can be readily achieved by analysis of body fluids such as blood and plasma.

    Technology's Essence


    Using a high-throughput genetic screen for vascular defects in zebrafish, researchers at the Weizmann Institute of Science have identified a genetic mutation that leads to excessive angiogenesis. The mutated gene is responsible for the assembly of ApoB-containing lipoproteins such as LDL, otherwise known as the ‘bad’ cholesterol. The group has found that low levels of LDL promote the formation of new blood vessels by directly interacting with the VEGF pathway. The outlined technology offers methods to modulate the levels of ApoB in order to stimulate, or inhibit angiogenesis, dependent on the therapeutic strategy. For example, inhibition of angiogenesis by increasing ApoB levels may repress tumor growth and attenuate its metastatic potential. In another application of this technology, increased circulating levels of ApoB can serve as a biomarker for the overproduction of blood vessels, thus enabling early diagnosis of pathogenic states in angiogenesis-dependent diseases.

    +
    • Dr. Karina Yaniv
    1582
    Over-expression of an oil globule protein for increased production of oil. Oil globules are discrete organelles, ubiquitous in animals, microorganisms and plants. Plant oil globules contain specific proteins that are tightly bound to their surface. These proteins are suggested to have different roles,...

    Over-expression of an oil globule protein for increased production of oil.

    Oil globules are discrete organelles, ubiquitous in animals, microorganisms and plants. Plant oil globules contain specific proteins that are tightly bound to their surface. These proteins are suggested to have different roles, including globules formation, degradation and stabilization. The present invention relies on the fact that oil globule associated proteins stabilize the oil bodies, and suggests the induction of one of these proteins as a means to obtain high yields of oil globules. 

    Applications


    • Higher yields of oil for food and biodiesel

    • Higher yield of the pigment astaxanthin or beta carotene in pigment-accumulating algae


    Advantages


    • Obtaining valuable materials (oil and pigments) with a relatively simple manipulation (i.e., over-expression of the globule-associated protein)
    • Cost-effective

    Technology's Essence


    In many microorganisms (e.g., yeasts, micro-algae and bacteria), the accumulation of oil globules appears to be induced specifically in response to environmental stresses such as nutrient limitation, high irradiance or osmotic stress. One specific protein, found only in micro-algae, was enriched in isolated globules and in stressed cells, in correlation to astaxanthin accumulation. This correlation makes the protein a promising candidate to function in stress response, and more specifically, in globule buildup. Therefore, it may be expected that its over-expression in plants or in algae could increase the accumulation of oil (tryglycerides).

    +
    • Prof. Uri Pick
    1647
    Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-...

    Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.
    Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-based search engines. Existing approaches are searching for a common cluster model. They are focused on identifying shared visual properties (such as a shared object) and subsequently grouping the images into meaningful clusters based upon these shared properties. Such methods are likely to fail once encountering a highly variable set of images or a fairly limited number of images per category.
    Researchers form Prof. Michal Irani lab suggest a novel approach based on ‘similarity by composition’. This technology detects statistically significant regions which co-occur across images, which reveals strong and meaningful affinities, even if they appear only in few images. The outcome is a reliable cluster in which each image has high affinity to many images in the cluster, and weak affinity to images outside the cluster.

    Applications


    • Images search engines - can be applied for collaborative search between users.
    • Detecting abnormalities in medical imaging.
    • Quality assurance in the fields of agriculture, food, pharmaceutical industry etc.
    • Security industry- from counting people up to identifying suspicious acts.
    • Computer games and brain machine interface.

    Advantages


    • Can be applied to very few images, as well as benchmark datasets, and yields state-of-the-art results.
    • Handles large diversity in appearance.
    • The search is not a global search, it requires no semantic query, tagging or pre-existing knowledge.
    • The multi-images collaboration significantly speeds up the process, reducing the number of random samples and iterations.
    • Set of images are obtained in time which is nearly linear in the size of the image collection.


    Technology's Essence


    In “clustering by composition”, a good cluster is referred as one in which each image can be easily composed using statistically significant pieces from other images in the cluster while is difficult to compose from images outside the cluster. Multiple images exploit their ‘wisdom of crowds’ to further improve the process. Using a collaborative randomized search algorithm images can be composed from each other simultaneously and efficiently. This enables each image to direct the other images where to search for similar regions within the image collection. The resulted sets of images affinities are sparse yet meaningful and reliable.

    +
    • Prof. Michal Irani
    1551
    A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals,...

    A novel set of manganese, ruthenium and related borohydride complexes (Pincer-type) were developed as remarkably efficient and environmentally-benign catalysts for the synthesis of alcohols, amines, amides, imines and esters, which are the basic building blocks for the research, chemicals, pharmaceutical and agrochemical industries. In addition, a catalytic carbon-carbon bond formation using non-activated aliphatic nitriles and carbonyl compounds was achieved with the manganese complex. These reactions are conducted under mild and neutral conditions, using low catalyst loading, require no hydrogen acceptors or oxidants, employ no corrosive or toxic reagents and generate no waste. Moreover, manganese is one of the most abundant transition metals on earth crust, making it appealing and biocompatible when considering a system for eventual scale-up and industrial use.

    In view of global concerns regarding economy, environment and sustainable energy resources, there is an urgent need for the discovery of new catalytic reactions. These newly developed catalysts address key problems of current traditional synthetic methodologies, both from the economic and the environmental aspects.

    Applications


    ·         Pharmaceuticals

    ·         Dyes

    ·         Cosmetics and fragrances

    ·         Fibers

    ·         Agrochemicals


    Advantages


    ·         Cost-effective in terms of reagents, reactions conditions (low temperature and pressure) and waste treatment (green reactions).

    ·         New synthetic pathways that were not possible before, such as the synthesis of amides and imines directly from alcohols and amines, esters synthesis from alcohols and methanol synthesis from CO2 and hydrogen.

    ·         Broad substrate scope.

    ·         Excellent yields.


    Technology's Essence


    Prof. David Milstein’s group has discovered a new mode of action for metal-ligand cooperation, involving aromatization–dearomatization of ligands. Pincer-type, pyridine-based complexes of Mn, Ir, Rh, Ru, Pd, Pt and acridine complexes of Ru have been shown to exhibit such cooperation, leading to facile activation of C-H, C-C, H-H, N-H, O-H bonds, and to novel, environmentally friendly reactions catalyzed by Mn and Ru.

    +
    • Prof. David Milstein
    1602
    A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic...

    A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic agents. However, although an efficient way to dowregulate bacterial and microbial gene expression has been long sought after, RNAi is not applicable in these species. The present technology offers a rapid and simple means to silence gene products in prokaryotic systems.

    Applications


    • Treatment of bacterial infection, by targeting bacterial genes vital for antibiotic resistance or bacterial virulence.
    • Enhanced biofuel production by targeting genes that interfere with ethanol and/or hydrogen biosynthesis.
    • Generation of improved bacterial strains for the diary industry (e.g. phage-resistant strains).
    • Discerning prokaryotic gene function by silencing the expression of the gene product.

    Advantages


    • The present technology may offer means to treat antibiotics-resistant strains.
    • Because CRISPR-based technology does not involve ‘classical’ genetic engineering, the resulting products do not require labeling as 'genetically modified'.
    • CRISPR-based technology system allows for the development of a rapid, scalable and high-throughput platform to probe the function of genetic circuits in prokaryotes.

    Technology's Essence


    CRISPR (clusters of regularly interspaced short palindromic repeats) is a recently discovered anti-viral system that functions as the prokaryotic-equivalent of the adaptive immune system. CRISPR provides bacteria with protection against foreign genetic elements such as viruses by incorporating short stretches of invading DNA sequences in genomic CRISPR loci. These integrated sequences are thought to function as a genetic memory that prevents the host from being infected by the viruses and other genetic elements containing this recognition sequence. A team of researchers at the Weizmann Institute, headed by Dr. Rotem Sorek, has developed a unique technology to gain robust and rapid silencing of prokaryotic gene expression by exploiting the CRISPR system capacity to efficiently downregulate gene products. This potent technology can potentially be utilized in a broad range of areas such as in the agriculture, food and pharmaceutical industries as well as in the scientific research arena.

    +
    • Prof. Rotem Sorek
    1629
    A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.Nearly...

    A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.
    Nearly all methods analyze pathway activity in a global “atomistic” manner, based on an entire sample set, not attempting to characterize individual tumors. Other methods use detailed pathway activity mechanism information and other data that is unavailable in a vast majority of cancer datasets.
    The new algorithm described here transforms gene-level information into pathway- level information, generating a compact and biologically relevant representation of each sample. This can be used as an effective prognostic and predictive tool that helps healthcare providers to find optimal treatment strategies for cancer patients. Furthermore, this method can be generically used for reducing the degrees of freedom in order to derive meaningful output from multi-dimensional data using limited knowns.

    Applications


    • Personalized cancer treatment.
    • A tool for mining insight from large datasets with limited knowns.

    Advantages


    • Provides personalized solutions.
    • Can be utilized for rare conditions with very limited known information.
    • Proved on real oncologic datasets.
    • A Generic unsupervised learning tool.

    Technology's Essence


    The algorithm analyzes NP pathways, one at a time, assigning a score DP(i) to each sample i and pathway P, which estimates the extent to which the behavior of pathway P deviates from normal, in sample i. To determine this pathway deregulation score the expression levels of those dP genes that belong to P using available databases are used. Each sample i is a point in this dP dimensional space; the entire set of samples forms a cloud of points, and the “principal curve” that captures the variation of this cloud is calculated. Then each sample is projected onto this curve. The pathway deregulation score is defined as the distance DP(i), measured along the curve, of the projection of sample i, from the projection of the normal samples.

     

    +
    • Prof. Eytan Domany
    • Prof. Eytan Domany

    Pages