You are here

Category
Technology Name
Briefcase
Scientist
1592
Novel genetically modified crops resistant to environmental friendly herbicides.Weeds are considered to be one of the major causes for crop losses by farmers. It is estimated that weeds cause an overall 12% reduction in crop yields or $33 billion in lost crop annually. With the advent of biotechnology...

Novel genetically modified crops resistant to environmental friendly herbicides.Weeds are considered to be one of the major causes for crop losses by farmers. It is estimated that weeds cause an overall 12% reduction in crop yields or $33 billion in lost crop annually. With the advent of biotechnology, several genetically modified (GM) crops were developed that are insect-resistant or herbicide-tolerant - to make pest and weed control easier for farmers. The major trait sought in GM crops is herbicide tolerance as one component of the weed management system. However, use of herbicide resistant crop does not fully protect from weeds, since herbicide-resistant weeds appear and propagate. The appearance of herbicide resistant weeds warrants the development of novel herbicide-tolerant crops. The present technology provides a method for introducing into plants the artificial resistance toward herbicide amino acids, which are not toxic to humans.

Applications


  • Conferring to transgenic plants resistance to the presence of phytotoxic non-protein amino acids.
  • Herbicide tolerance to meta-tyrosine can be expanded into different types of crops such as wheat, cotton, alfalfa, etc.
  • Development of additional non-protein herbicidal amino acids and crops resistant to these compounds.

Advantages


  • Weed control can be performed with non-hazardous, environment-friendly herbicides.
  • Genetically-modified resistant crops enable the use of non-selective herbicides, allowing for more robust weed management.

Technology's Essence


The method is based on incorporation into the plant’s organelles (mitochondria and chloroplast) bacterial aaRS possessing editing activity toward a given toxic amino acid (aaRS in organelles usually lack such activity). As a proof-of-concept, a genetically modified Arabidopsis thaliana was created, capable of growing in the presence of exogenous meta-tyrosine (a known herbicide) at concentrations that have a deleterious effect on unmodified plant. However, the method is not limited to Arabidopsis thaliana or to m-tyr amino acid only.

+
  • Prof. Mark Safro
1633
The ErbB family consists of four structurally related receptor tyrosine kinases. Excessive ErbB signaling is associated with enhanced tumorogenesis, and as such serves as a major therapeutic target in a wide array of solid tumor cancers. A member of this family, the human epidermal growth factor...

The ErbB family consists of four structurally related receptor tyrosine kinases. Excessive ErbB signaling is associated with enhanced tumorogenesis, and as such serves as a major therapeutic target in a wide array of solid tumor cancers. A member of this family, the human epidermal growth factor receptor 2 (ErbB-2/HER2), is overexpressed in a variety of human cancers, including breast and gastric tumors. ErbB-2/HER2 amplification correlates with elevated metastatic activity and poor prognosis. An innovative and highly potent approach for cancer treatment is proposed here, based on delivering novel nucleic acid-based entities called aptamers targeting ErbB-2/HER2. Remarkably, the antitumor effect exerted by the multimeric anti-ErbB-2/HER2 aptamers is twofold stronger than that elicited by currently available antiErbB-2 monocolonal antibodies.

Applications


  • A novel class of molecules for the treatment of human cancers exhibiting excessive ErbB-2/HER2 signaling.
  • Combination with other therapeutic modalities may predictably enhance the antitumor activity of the aptamer.
  • Aptamers may also be harnessed as carrier molecules to deliver toxic loads into cancer cells.

Advantages


  • Unlike traditional methods for producing monoclonal antibodies, no organisms are required for the in vitro selection of oligonucleotides. This facilitates the selection and chemical design process of aptamers.
  • Aptamers are produced chemically in a readily scalable process.
  • Non-immunogenic.
  • Unlike other oligonucleotide-based therapeutics (siRNAs, antisense RNA), aptamer therapeutics can be developed for intracellular as well as extracellular or cell-surface targets.

Technology's Essence


Aptamers are single-stranded oligonucleotides that fold into defined architectures and avidly bind to targets such as proteins, with the same effectiveness and affinity associated with mAbs. Using a novel screening technology the research team has identified a multimeric aptamer with pronounced ErbB-2/HER2 inhibitory activity. Preliminary preclinical experiments show that treatment of gastric tumor-bearing mice with trimeric aptamer resulted in reduced tumor growth that was nearly twofold stronger than that achieved with a monoclonal anti-ErbB-2/HER2 antibody.

+
  • Prof. Yosef Yarden
  • Prof. Michael Sela
1536
Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.   Cellulosic biomass...

Designer cellulosomes are synthetic multi-enzyme complexes that can degrade cellulosic biomass efficiently and economically. The goal of second generation biofuel production is to efficiently convert agricultural waste, algae and other cellulosic biomass into sugar monomers.

 

Cellulosic biomass pretreated (e.g. with acid) under ideal conditions, still requires very high enzyme doses to provide efficient bioconversion.

The cost of enzymes and pretreatment is a major hurdle in the production of low-cost cellulosic biofuel, competitive with that of fossil fuels or ethanol produced from corn or sugarcane.

 

The complex structure of cellulosic materials is built to resist bacterial hydrolytic enzymes. The cooperation of many types of carbohydrate-active enzymes is required for effective degradation. By designing synthetic cellulosomes, researchers at The Weizmann Institute enhance synergy between carbohydrate-active enzymes to achieve remarkable degradation rates. Their discoveries can lead to highly efficient conversion of cellulosic biomass, and thus have a major impact in the field of food production and sustainable energy.

Applications


  • High-yield, cost-effective conversion of plant cell wall biomass into soluble sugars for the food industry and the production of biofuels and biochemicals.

Advantages


  • Bio-engineered cellulosomes exhibit synergistic degradation activity of natural substrates compared to the combined action of the free wild-type enzymes.

Technology's Essence


The invention involves the conversion of enzymes (cellulases and xylanases) from the free mode to the cellulosmal mode by attachment using a recombinant dockerin molecule. The dockerin-bearing enzymes are incorporated into designer cellulosomes by interacting with a matching cohesion-containing chimeric scaffoldin (scaffoldin subunits contain the cohesin modules that incorporate the enzymes into the cellulosome complex via their resident dockerins). This approach has generated over two fold enhancement of synergistic hydrolysis on plant cell wall cellulosic biomass. These results create new possibilities for designing superior enzyme compositions for degradation of complex polysaccharides into simple soluble sugars.

+
  • Prof. Edward A. Bayer
1614
A new process for the synthesis of MoS2 nanotubes using lead as a growth promotor.This procedure facilitates the large scale production of MoS2 nanotubes, as previous scaling-up attempts were proven problematic, and can be implemented in production of other INTs, such as NbS2 and TaS2, which is...

A new process for the synthesis of MoS2 nanotubes using lead as a growth promotor.
This procedure facilitates the large scale production of MoS2 nanotubes, as previous scaling-up attempts were proven problematic, and can be implemented in production of other INTs, such as NbS2 and TaS2, which is currently not possible.
In view of the expanding market of composite materials with improved mechanical, electrical and thermal properties, and considering the inherent advantages of production and stability of inorganic nanotubes compared with the organic ones, there is a growing need for implementing new production processes of nanomaterials.

Applications


  • Large scale production of INTs
  • Production of new INTs with new properties

Advantages


  • Scalable synthesis of inorganic nanotubes
  • Production of new INT's not possible so far

Technology's Essence


The invention involves introducing soft metals (Pb, Bi and others- denoted "A") in catalytic amounts to the metal-chalcogenide (denoted "MX2" with X=S, Se) raw material. The soft metals act as growth promotors to the metal-sub-oxide phase, in presence of oxygen (as water vapor or soft-metal-oxide) facilitating the formation of metal-sub-oxide nanowhiskers, which then function as scaffolds for the formation of the desired metal-chalcogenide nanotubes.
The result is formation of MX2 nanotubes containing a minute amount of M-doping and intercalation.
This novel technology entails great potential in the growing market of inorganic nanotubes, with applications in lubrication (oils, automotive, cosmetics, pharmaceuticals, medical devices and more), shock absorption, composites, coatings and their applications in multiple industries, and more.

+
  • Prof. Reshef Tenne
1657
Bioengineered formatotrophic E.Coli can be utilized to efficiently generate biomass from electricity. A popular direction for cleantech in recent years is that of biorefineries, that use living organisms to supply the human demand for chemical commodities. Electricity is considered to be a potential...

Bioengineered formatotrophic E.Coli can be utilized to efficiently generate biomass from electricity. A popular direction for cleantech in recent years is that of biorefineries, that use living organisms to supply the human demand for chemical commodities. Electricity is considered to be a potential feedstock for biorefineries, with the end products serving as solid or liquid storage of energy.  Such microbial electrosynthesis is highly dependent on mediators to enable electron transfer from an electrode to a living cell. 
Formic acid (formate) is an electron mediator with a number of desired features for microbial electrosynthesis. However, wild-type organisms that can grow on formate are not suitable for industrial use due to slow growth rates and metabolism. 
Researchers at the Weizmann Institute have successfully engineered a formatotrophic E.coli. By combining systematical analysis with computational tools they screened numerous metabolic pathways and identified the optimized metabolic pathway that supports efficient formate-based growth. This innovative method enables the design of industrial strains of bacteria capable of efficient microbial electrosynthesis.

Applications


  • Biofuel and chemical commodities production.

Advantages


  • Efficient and robust storage of electrical energy.
  • Cost effective conversion of C1 compounds into sugars.

Technology's Essence


By engineering E. coli, the ”workhorse” bacteria used in biotechnology and enabling its growth on formate, researches at Dr. Ron Milo’s lab paved the way for efficient microbial electrosynthesis. The Researches started by investigating many metabolic pathways in order to discover how a model organism such as E.coli can be engineered for formatotrophic growth.  estimate which pathway is most suitable to support growth on formate each pathway was examined based on various criteria such as biomass yield, thermodynamic favorability, chemical motive force, kinetics and additional practical challenges. 
One short favorable pathway was consistently identified, that is the reductive glycine pathway. Furthermore.  Researches generated an isolated organism that is able to convert formate to pyruvate or glycerate.


Licensing Status


Pending

+
  • Prof. Ron Milo
1568
A new multi-state molecular building block for tomorrow’s electric circuits and memory storage devices was realized. Information technology is the core of many industries today. The main challenge facing this industry is the need for miniaturization, due to an ever increase in information density....

A new multi-state molecular building block for tomorrow’s electric circuits and memory storage devices was realized. Information technology is the core of many industries today. The main challenge facing this industry is the need for miniaturization, due to an ever increase in information density. Molecular information processing and storage is becoming a logical candidate to replace the available methods, by use of molecules as building blocks for “bottom up” approaches. A memory device that exists in multiple stable states with a molecular based assembly was prepared. This can offer new ways in which information is processed (multiple-threads) as well as increasing the information density in random access memory (RAM), storage devices and methods.

Applications


  • Binary and ternary Static Random Access Memory
  • Multi-State Dynamic Random Access Memory

  • Multi-State Flash Memory

  • Multi-State Solid State Drive (SSD)

  • Multi-State Information Processing Units


Advantages


  • Low manufacturing cost

  • Robustness

  • Optical read out allows fast data transfer, and non destructive information access

  • Short response time and fast read-out.

  • System is easy to reset

  • Little material is needed/ environmentally friendly.

  • The system can be integrated with other electronic circuits

  • Multi-valued information storage

  • Increase in information density, with no need for additional spatial requirements.

  • Alternative to silicon  technology


Technology's Essence


Electronically addressable multi-state memory for sequential logic flip-flop, flip-flap-flop circuits, and higher order switchable memory circuits,  can be constructed by materials composed of a molecular based assembly that can exist in multiple states. Since the optical output is a precise function of the applied voltage, multi-valued information can be written on to the assembly by applying specific potential biases. The read and write cycle is completed by monitoring the induced optical changes of the system. This system uses the same electrical inputs as conventional memory devices and uses an optical read-out which is non destructive and fast. The properties of the device can be used to create an apparatus for information storage especially with respect to developing solid-state drives in computers (SSDs).

+
  • Prof. Milko E. Van der Boom
1596
A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a...

A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a light beam requires fast, accurate, and simple measurement techniques to fully characterize it’s properties.Currently, the ability to measure light polarization exists only qualitatively and at only one specific point in a light beam. Our scientific team has developed a new method to measure changing light polarizations in real-time. 
Our demonstrated system presents a simple way to continuously measure and quantify light polarizations in real-time, throughout the entire length of a light beam. This method has the potential to set a new industry standard, and could lead to a number of applications that were previously not possible.
 

Applications


  • Molecular imaging
  • Medical and industrial lasers
  • Non-destructive testing
  • Analytical chemistry
  • Fiber-optic communications
  • Cryptography
  • Astronomy

Advantages


  • Proved accuracy
  • Simple technique
  • Compact configuration
  • Incorporate into existing equipment
  • Can measure fully polarized, partially polarized, and un-polarized light
  • Two modes of operation:   Space-variant polarization measurements and Wavelength-variant polarization measurements

Technology's Essence


Our polarization measurement technique is based on splitting an input light beam into six parallel beams, each having a predetermined shift in the polarization state with respect to the other beams. The beam components are simultaneously detected using a pixel matrix, such as a CCD camera, to determine their intensity distribution. From this, the polarization state distribution along the cross-section of the input optical beam is determined and we can calculate the Stokes parameters, a set of values which defines polarized light. This allows us to characterize and quantify fully polarized, partially polarized, and un-polarized light at every point in the beam in real-time, with either static or dynamic polarization states. Our method can be applied for two conditions of varying polarizations – changing with position (space-variant) or changing in color (wavelength-variant).

+
  • Prof. Nir Davidson
1640
Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The...

Although early programs targeting MMPs (matrix metalloproteins) were largely unsuccessful due to adverse side effects, they remain a viable and highly desirable therapeutic target. The main obstacle in the attempts to target MMPs is the ability to selectively target individual family members. The present invention provides highly selective targeted therapy against MMP-7, which is strongly associated with aspects of cancer development such as angiogenesis and metastasis.
The innovative concept leading to this high selectivity is immunization with both a synthetic metal-protein mimicry molecule, previously developed by the present inventors, followed by the metalloenzyme itself (e.g. MMP-7). The resulting antibody exhibits exceptional degree of specificity towards MMP-7 over other MMPs.
The present technology offers an opportunity to re-introduce improved MMP-targeting agents to the cancer therapeutics market, in particular aggressive cancers that face a major unmet medical need. 

Applications


  • Therapy for MMP-7 associated diseases
  • Diagnostic tool for MMP-7 associated diseases

Advantages


  • Highly selective
  • Safe – avoids adverse effects that are associated with broad spectrum MMP inhibitors.
  • Efficient – targeting a physiological active conformation of the enzyme

Technology's Essence


The present technology is based on a previous invention that was developed in Prof. Sagi's lab, of synthetic metal-protein mimicry molecules that mimic the conserved structure of the metalloenzyme catalytic zinc-histidine complex within the active site of each MMP enzyme.
These molecules were shown to be powerful immunogens in the generation of highly selective MMP antibodies since they recognize both electrical and structural determinants residing within the enzyme active site. The potential of this method to successfully generate MMP-targeting therapeutics was shown for MMP-9/2 inhibitory antibodies in mouse models of inflammatory bowel disease.
Prof Sagi and her team now take this invention a step further to achieve even higher specificity. They show that immunizing with the mimicking molecules described above, followed by immunization with the metalloenzyme itself increases selectivity further.   
Implemented for MMP-7-targeting, this approach yielded an antibody with a 5 fold lower Ki towards MMP-7 than towards other MMPs (e.g. MMp-2 and MMP-9).


 

+
  • Prof. Irit Sagi
  • Prof. Irit Sagi
1546
Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the...

Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the gene, and supplementing the host with specific tRNAs. Yet the full challenge of heterologous expression is not only to maximize expression per host cell, but also to minimize the burden on the host. The outlined invention describes a universally conserved profile of translation efficiency along mRNAs, based on the adaptation between coding sequences and the tRNA pool, to improve heterologous gene expression and thus protein production.

Applications


  • Improvement of the yield and success rate of recombinant protein production.

Advantages


  • Protein expression levels can be artificially increased
  • Minimization of the burden on the host

Technology's Essence


The translation efficiency profile of a gene is defined, for each codon position, as the estimated availability of the tRNAs that participate in translating that codon. The profile is high at codons that correspond to abundant tRNAs and low at codons that correspond to rare tRNAs. In this invention it is predicted that the first ~30-50 codons of genes appear to be translated with a low efficiency “ramp”, while the last ~50 codons show highest efficiency. The “ramp” serves as a late stage of initiation and is an optimal and robust means to reduce ribosomal traffic jams, thus minimizing occupation of free ribosomes, ribosomal abortions and, ultimately, the cost of protein expression. Implementation of appropriate ramping in heterlogous proteins, given the host?s tRNA pool, might improve the yield of expressed recombinant proteins.

+
  • Prof. Yitzhak Pilpel
1616
Existing treatments against cancer are non-sufficiently selective. Immunotherapy based treatment offers highly selective and efficient solution to this problem. A promising approach in Immunotherapy is adoptive cell therapy (ACT). In ACT, therapeutic lymphocytes are administrated to patients in order...

Existing treatments against cancer are non-sufficiently selective. Immunotherapy based treatment offers highly selective and efficient solution to this problem.
A promising approach in Immunotherapy is adoptive cell therapy (ACT). In ACT, therapeutic lymphocytes are administrated to patients in order to treat a disease. In this process antibody-type cells are generated ex vivo, and then infused to the patient. By this technology the cells can be redirected against specific tumors via genetic engineering, using chimeric receptors.
Currently ACT is logistically and economically challenging since it is limited by the used of the patients’ own cells. Another key concern is safety, due to the danger that the allogeneic cells will be rejected by the patient, or will attack the patient.
In cancer, use of tumor specific, chimeric receptor redirected allogeneic T cells can transform ACT into a standardized, off-the shelf therapy. Overall this method proposes a safe and effective adoptive therapy using allogeneic cells while avoiding the use of bone marrow transplantation (BMT).

Applications


  • Cancer immunotherapy

Advantages


  • Off the shelf, standard treatment
  • Safe
  • Effective
  • No bone marrow transplantation (BMT) is required

Technology's Essence


A novel approach for adoptive immunotherapy using fully MHC-mismatch allogeneic T cells. These cells are redirected with tumor specific non-MHC-restricted antibody-based chimeric antigen receptor (T-bodies) in the absence of Graft-versus-host disease (GVHD). In order to create a standardize treatment, the redirection of T cells can be done through an antibody-based chimeric antigen receptor (CAR), thus creating ‘universal effector T cells’. This is based on a combination of of MHC-mismatched allogeneic T-cells with an MHC unrestricted chimeric antigen receptor. These cells would recognize their target independently of MHC restriction, therefore applied as an ‘off-the shelf’ immunotherapy. Regarding the second challenge of avoiding GVHD, by using a controlled lymphodepletion the researchers were able to create therapeutic window during which the allo-T-body cells could destroy the tumor before being themselves rejected.

+
  • Prof. Zelig Eshhar
1664
Neuroinflammation is well established as a key secondary injury mechanism following CNS trauma, such as traumatic brain/spinal injury or ischemic stroke, and it has been long considered to contribute to the damage sustained and fatal outcomes following brain injury. Early inflammatory events enhance...

Neuroinflammation is well established as a key secondary injury mechanism following CNS trauma, such as traumatic brain/spinal injury or ischemic stroke, and it has been long considered to contribute to the damage sustained and fatal outcomes following brain injury.
Early inflammatory events enhance brain damage, yet they provide the framework for later inflammatory events that enhance tissue remodeling and are crucial for tissue recovery.
A major unmet need in the field is a targeted treatment that would down regulate the damaging events of inflammation, while maintaining reparative functions. 
Altering between CNS microglia pro and anti-inflammatory activation states is at the core of injury-induced neuroinflammation and presents an opportunity to specifically tilt the balance towards anti-inflammatory and repair processes.
The present discovery elucidates the mechanisms that lead to injury-induced microglia over-activation and proposes IFN-? as a therapeutic strategy to induce microglia resolving state and relive inflammation. 

Applications


Anti-inflammatory treatment following CNS injury

Advantages


  • Targeted therapy – avoids general immuno-suppressive side effects
  • Based on a well understood molecular mechanism
  • May allow relatively large therapeutic window – according to proof-of-concept  preliminary experiments

Technology's Essence


Resident microglia are the major specialized innate immune cells of the central nervous system (CNS). During the process of wound healing or pathogen removal, there is an induction of the microglia active pro-inflammatiry phenotype (M1), leading to a transient inflammatory response, which is resolved via local conversion to the M2 anti-inflammatory phenotype.  Following acute injury, microglia fail to acquire an inflammation-resolving phenotype (M2-like phenotype) in a timely manner, often resulting in self-perpetuating local inflammation and tissue destruction beyond the primary insult.
Prof. Schwartz and her team uncovered the mechanisms that lead to injury-based inhibition of the M1 to M2 phenotype switch.  They showed that the capacity to undergo pro- to anti-inflammatory (M1-to-M2) phenotype switch is controlled by the transcription factor Interferon regulatory factor-7 (IRF7).  Their results demonstrate that restoring Irf7 expression by IFN-? (a known IRF7 activator) reactivates the circuits leading to M2 conversion by improving the resolution of pro?inflammatory cytokines expressed by microglia ex vivo and in vivo, following acute CNS insult.
Importantly, the anti-inflammatory activity of IFN-? was demonstrated in-vivo, when administrated 24h following the primary insult, proposing a relatively large therapeutic window.

+
  • Prof. Michal Schwartz-Eisenbach
1577
A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of...

A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of desulfurization.Techniques to capture SO2 from coal-burning plants have not changed in nearly 40 years. Once implemented, the technology presented here can become significantly more efficient and environmentally friendly than existing techniques, since no slurry waste is created from the wet sorbents typically used to capture SO2.The novel system can selectively recycle SO2 into useful sulfur-based compounds which can be resold; utilizing a carbonate eutectic melt this procedure can also be aimed to generate elemental sulfur, an inert and non-toxic compound which can be stored long-term until required for further use.In a world anxious over climate change, yet in demand of more energy, solutions should have the capacity to be implemented quickly and incorporated into existing infrastructure. This technology offers the potential to tackle several problems with one simple solution.

Applications


Integrate into industrial fossil-fuel burning facilities which include:

  • Power plants
  • Cement factories
  • Steel foundries

Advantages


  • Implement into existing infrastructure and reduce reagents’ costs compared to current techniques
  • Significantly higher efficiency and elimination of hazardous waste by-products
  • Potential generation of revenue from recycled Sulfur waste.

Technology's Essence


The significant enhancement of this scrubbing technique is the sequentially operable scrubbing zone and regeneration zone, which communicate with one another via a molten eutectic mixture of lithium, sodium and potassium carbonates. In the scrubbing zone, an ingress flue gas interacts with the molten carbonates, resulting in chemical absorbance of the SO2 and in discharge of reaction gases. In the regeneration zone, either chemical or electrochemical melt regeneration takes place resulting in formation of sulfur containing vapor which is cooled down for converting the sulfur-containing vapor into a liquid and solid phase for a further collection and utilization.The technology developed by Prof. Igor Lubomirsky and his team introduces three essential improvements over past techniques: (i) the removal of sulfate from the melt is achieved at expected operating temperatures of an industrial scrubbing tower (480-550°C), which drastically reduces corrosion of metal components, (ii) the reduction of sulfates by CO gas rather than by carbon powder represents a simpler, one-step process, which results in a high reduction rate and allows for the reaction chamber to be small (few tens of m3 for a 1GW coal plant), and (iii) the removal of sulfate in the form of COS, rather than H2S, provides considerable freedom in choosing the final sulfur product – either sulfuric acid or elemental sulfur.

 

+
  • Prof. Igor Lubomirsky
1601
A potent combination therapy against non-invasive breast cancer Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25...

A potent combination therapy against non-invasive breast cancer

Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25% of breast cancers that are diagnosed in the US are DCIS. DCIS is commonly treated by surgical intervention followed by adjuvant radiation therapy. However, a significant fraction of the DCIS lesions, which display HER2 gene amplification, are associated with increased relapse rate following surgery. Therefore, in cases of HER2-overexpressing DCIS a molecularly targeted therapy might be necessary for complete eradication of microscopic remnants following surgical tumor removal. The current technology presents an potential DCIS therapeutic strategy that collectively targets the functionally linked HER2 and Notch pathways.

 

Applications


  • Combination therapy for DCIS patients following surgical tumor removal.
  • Classification of DCIS patients according to HER2 Notch activation patterns to identify patients with increased risk of relapse after surgery.
  • Diagnostic antibodies to NRG4 to screen for cancer cell subtypes that express/over-express NRG4.
  • NRG4 fusion conjugates, where NRG4 acts as a vehicle to direct the conjugate to cells specifically expressing the receptor ErbB4.

 


Advantages


  • Targeted cancer therapies will give doctors a better way to tailor cancer treatment.
  • Targeted cancer therapies hold the promise of being more selective, thus harming fewer normal cells, reducing side effects, and improving the quality of life.
  • The proposed treatment strategy may prove beneficial in DCIS patients with poor prognosis.

 


Technology's Essence


The HER2/Neu oncogene, a member of the HER/ErbB signaling network, encodes a receptor-like tyrosine kinase, whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. Pre-invasive lesions, such as DCIS, overexpress HER2 at higher frequency than invasive ones. Another signal transduction pathway critical for breast cancer progression comprises Notch family receptors and their membrane-bound ligands. In the current technology, a team of researchers from the Weizmann Institute of Science uncovered that overexpression of HER2 in a novel experimental model of DCIS leads to transcriptional upregulation of Notch pathway components, resulting in enhanced tumor cell survival and proliferation. Combined treatment with HER2 and Notch pathway inhibitors resulted in decreased proliferative and tumorigenic potential. The current technology offers specific and combined targeting of HER2 and Notch pathways for DCIS treatment. This approach may also be tailored for DCIS patients with enhanced co-expression of HER2 and Notch.

+
  • Prof. Yosef Yarden
1643
Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due...

Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due to their participation in the pathology of diabetes. Various techniques have been suggested to accomplish this step, yet efficient and robust isolation of beta cells remains a challenging task.
The present invention provides an efficient tag-free isolation method for pancreatic cell sub-types, based on separation according to a newly identified collection of surface markers. These markers are tightly correlated with specific functions, such as insulin production, ensuring enrichment of the desired functionality.
Probing against the newly identified markers in a combinatorial manner allows high degree of purity without compromising the yield, significantly increasing the amount of purified cells. Finally, the method is compatible with both extracts of pancreatic tissues and stem cells derived cultures, the latter set up high expectations in the diabetes therapy field.

Applications


A kit for isolation of distinct pancreatic cell subtypes

Advantages


  • High purity without compromising the yield of isolated cells.
  • Compatible with a variety of heterogeneous sources including cells extracted from pancreatic tissue, committed lineages of stem cells and cultures of differentiated stem cells.                                               

Technology's Essence


Using an innovative high throughput screen, linking specific cell surface markers with a particular functionality (e.g. insulin production), a collection of markers not previously identified in connection with pancreatic cells or with diabetes was found to be consistently expressed in human islets.
Cell isolation according to the selected markers is performed by exposing the heterogeneous source of cells to specific antibodies that recognize these markers, followed by a choice of sorting techniques such as fluorescence activated cell sorting (FACS).
The innovative concept of this method is the use of marker combinations, iterating the selection. Only cells that express both markers will be sorted out, thus increasing specificity and reducing contaminations. This increased specificity gives rise to a higher degree of purity without compromising the yield, resulting in larger amounts of isolated cells.
By applying the initial screen in yet another iteration, additional markers can be added to the selection, to refine the isolation procedure. 
As this method is generally applicable to the purification of mature as well as pluripotent or partially differentiated beta cell progenitors, it holds great potential for the isolation of clinically relevant cells for treatments of diabetes.

+
  • Prof. Michael Walker
  • Prof. Michael Walker
1554
We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer...

We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer need to be of the same resonance. In addition, this technique is very susceptible to noise which limits efficiency. The present invention provides a technique for a robust and efficient mid-range wireless power transfer between two coils. This technique can transfer the energy between the coils without being sensitive to any resonant constrains, noise and other interferences that exist in the neighborhood of the coils

Applications


  • Simultaneous energy transfer to several electrical gadgets.

Advantages


  • Efficient
  • Not sensitive to electrical interference.
  • No need for an exact resonance match between transmitter and transformer.

Technology's Essence


The efficiency and robustness of this technology is achieved by adapting the process of rapid adiabatic passage (RAP) for a coherently driven two state atom to the field of wireless energy transfer. In other words, the resonance of the transmitter is tuned adiabatically to scan a resonant frequency range, thus arriving at a dynamic solution to the electrical transfer problem.

+
  • Prof. Yaron Silberberg

Pages