You are here

Category
Technology Name
Briefcase
Scientist
1554
We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer...

We present a novel approach resulting in efficient and robust wireless energy transfer in the mid-range. Applications of wireless energy transfer are already in use and are continuously being developed. The main limit of wireless energy transfer techniques is that both the transmitter and transformer need to be of the same resonance. In addition, this technique is very susceptible to noise which limits efficiency. The present invention provides a technique for a robust and efficient mid-range wireless power transfer between two coils. This technique can transfer the energy between the coils without being sensitive to any resonant constrains, noise and other interferences that exist in the neighborhood of the coils

Applications


  • Simultaneous energy transfer to several electrical gadgets.

Advantages


  • Efficient
  • Not sensitive to electrical interference.
  • No need for an exact resonance match between transmitter and transformer.

Technology's Essence


The efficiency and robustness of this technology is achieved by adapting the process of rapid adiabatic passage (RAP) for a coherently driven two state atom to the field of wireless energy transfer. In other words, the resonance of the transmitter is tuned adiabatically to scan a resonant frequency range, thus arriving at a dynamic solution to the electrical transfer problem.

+
  • Prof. Yaron Silberberg
1601
A potent combination therapy against non-invasive breast cancer Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25...

A potent combination therapy against non-invasive breast cancer

Breast cancer is the most common cancer in females. Among the different subtypes of breast cancer, ductal carcinoma in situ (DCIS) represents an intermediate step between normal breast tissue and invasive breast cancer. Currently, about 25% of breast cancers that are diagnosed in the US are DCIS. DCIS is commonly treated by surgical intervention followed by adjuvant radiation therapy. However, a significant fraction of the DCIS lesions, which display HER2 gene amplification, are associated with increased relapse rate following surgery. Therefore, in cases of HER2-overexpressing DCIS a molecularly targeted therapy might be necessary for complete eradication of microscopic remnants following surgical tumor removal. The current technology presents an potential DCIS therapeutic strategy that collectively targets the functionally linked HER2 and Notch pathways.

 

Applications


  • Combination therapy for DCIS patients following surgical tumor removal.
  • Classification of DCIS patients according to HER2 Notch activation patterns to identify patients with increased risk of relapse after surgery.
  • Diagnostic antibodies to NRG4 to screen for cancer cell subtypes that express/over-express NRG4.
  • NRG4 fusion conjugates, where NRG4 acts as a vehicle to direct the conjugate to cells specifically expressing the receptor ErbB4.

 


Advantages


  • Targeted cancer therapies will give doctors a better way to tailor cancer treatment.
  • Targeted cancer therapies hold the promise of being more selective, thus harming fewer normal cells, reducing side effects, and improving the quality of life.
  • The proposed treatment strategy may prove beneficial in DCIS patients with poor prognosis.

 


Technology's Essence


The HER2/Neu oncogene, a member of the HER/ErbB signaling network, encodes a receptor-like tyrosine kinase, whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. Pre-invasive lesions, such as DCIS, overexpress HER2 at higher frequency than invasive ones. Another signal transduction pathway critical for breast cancer progression comprises Notch family receptors and their membrane-bound ligands. In the current technology, a team of researchers from the Weizmann Institute of Science uncovered that overexpression of HER2 in a novel experimental model of DCIS leads to transcriptional upregulation of Notch pathway components, resulting in enhanced tumor cell survival and proliferation. Combined treatment with HER2 and Notch pathway inhibitors resulted in decreased proliferative and tumorigenic potential. The current technology offers specific and combined targeting of HER2 and Notch pathways for DCIS treatment. This approach may also be tailored for DCIS patients with enhanced co-expression of HER2 and Notch.

+
  • Prof. Yosef Yarden
1643
Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due...

Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due to their participation in the pathology of diabetes. Various techniques have been suggested to accomplish this step, yet efficient and robust isolation of beta cells remains a challenging task.
The present invention provides an efficient tag-free isolation method for pancreatic cell sub-types, based on separation according to a newly identified collection of surface markers. These markers are tightly correlated with specific functions, such as insulin production, ensuring enrichment of the desired functionality.
Probing against the newly identified markers in a combinatorial manner allows high degree of purity without compromising the yield, significantly increasing the amount of purified cells. Finally, the method is compatible with both extracts of pancreatic tissues and stem cells derived cultures, the latter set up high expectations in the diabetes therapy field.

Applications


A kit for isolation of distinct pancreatic cell subtypes

Advantages


  • High purity without compromising the yield of isolated cells.
  • Compatible with a variety of heterogeneous sources including cells extracted from pancreatic tissue, committed lineages of stem cells and cultures of differentiated stem cells.                                               

Technology's Essence


Using an innovative high throughput screen, linking specific cell surface markers with a particular functionality (e.g. insulin production), a collection of markers not previously identified in connection with pancreatic cells or with diabetes was found to be consistently expressed in human islets.
Cell isolation according to the selected markers is performed by exposing the heterogeneous source of cells to specific antibodies that recognize these markers, followed by a choice of sorting techniques such as fluorescence activated cell sorting (FACS).
The innovative concept of this method is the use of marker combinations, iterating the selection. Only cells that express both markers will be sorted out, thus increasing specificity and reducing contaminations. This increased specificity gives rise to a higher degree of purity without compromising the yield, resulting in larger amounts of isolated cells.
By applying the initial screen in yet another iteration, additional markers can be added to the selection, to refine the isolation procedure. 
As this method is generally applicable to the purification of mature as well as pluripotent or partially differentiated beta cell progenitors, it holds great potential for the isolation of clinically relevant cells for treatments of diabetes.

+
  • Prof. Michael Walker
  • Prof. Michael Walker
1583
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel...

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel technique developed at Weizmann Institute, has a disruptive potential to change this market.  

Prof. Y. Imry and his team at Weizmann Institute came up with Thermal Electric conversion technique, based on a new TE device architecture which allows performance enhancement. The core invention is in the field of Bi-junction thermoelectric device architecture, having a thermoelectric gate interposed between two electric regions, leading to thermal electric conversion efficiency optimization.

Applications


Various TE devices will benefit from better TE efficiency, achieved by the developed conversion technique. The growing market for thermoelectric energy harvesters will reach $865 million by 2023. Current TE market is driven by consumer energy harvesting applications and some niche segments:

  •  Automotive energy harvesting applications, since around 40% of the energy produced by internal combustion engines is currently lost in heat through the exhaust.
  • Wireless devices/sensors segment is forecasted to account for over a third of the overall market for thermoelectric harvesters and cooling by 2023.

Advantages


In order to drive down the thermoelectric module costs and facilitate broad deployment, TE has several barriers to overcome: 

  •  low conversion efficiency;
  • toxicity and low availability of chemical elements constituting part of the thermoelectric materials.

 In this context, the main TE market challenges are reaching higher efficiencies using low cost thermoelectric materials. These challenges can be addressed by the proposed technology.


Technology's Essence


Prof. Y. Imry and his team at Weizmann Institute have developed novel bi-junction TE device, having a thermoelectric gate interposed between two electric regions, aiming at TE efficiency improvement. Thermoelectric efficiency depends on the figure of merit (ZT). The figure-of-merit curves, for the developed 3-T TE device configurations show that higher ZT should be achieved.  

The secret essence of the invented configuration is in using two independently adjustable input parameters - voltage and temperature - as drivers for optimizing device thermoelectric efficiency.

 

+
  • Prof. Yoseph Imry
1621
Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases,...

Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases, age-related macular degeneration and atherosclerosis. The global market for angiogenesis stimulators and inhibitors is forecast to reach ~US $50 billion by the year 2015. Most of the currently marketed angiogenesis regulators, such as Avastin, typically display modest efficacy and therefore further highlight the great need for the development of novel therapeutics. The current technology presents a novel method to treat angiogenesis-related disorders by modulating apolipoprotein B (ApoB).

Applications


  • ApoB is a potential therapeutic target for the treatment of cancer and other non-neoplastic diseases.
  • ApoB levels may serve as a biomarker for cancer metastasis.

Advantages


  • The anti-angiogenic effect of LDL administration was demonstrated in vivo, in zebrafish models, as well as in vitro, in relevant human cells lines.
  • Regulation of ApoB levels may be applied to treat a broad range of angiogenesis-dependent diseases.
  • Detection of ApoB levels can be readily achieved by analysis of body fluids such as blood and plasma.

Technology's Essence


Using a high-throughput genetic screen for vascular defects in zebrafish, researchers at the Weizmann Institute of Science have identified a genetic mutation that leads to excessive angiogenesis. The mutated gene is responsible for the assembly of ApoB-containing lipoproteins such as LDL, otherwise known as the ‘bad’ cholesterol. The group has found that low levels of LDL promote the formation of new blood vessels by directly interacting with the VEGF pathway. The outlined technology offers methods to modulate the levels of ApoB in order to stimulate, or inhibit angiogenesis, dependent on the therapeutic strategy. For example, inhibition of angiogenesis by increasing ApoB levels may repress tumor growth and attenuate its metastatic potential. In another application of this technology, increased circulating levels of ApoB can serve as a biomarker for the overproduction of blood vessels, thus enabling early diagnosis of pathogenic states in angiogenesis-dependent diseases.

+
  • Dr. Karina Yaniv
1556
Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars. Modern...

Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars.

Modern agriculture faces limited arable land and climate changes. Carbon fixation under these conditions will become a significant growth limiting factor. The proposed solution provides the ability to enhance crop yields using the same expanse of land.

The novel technology presents alternative synthetic carbon fixation pathways that were discovered by harnessing a systems biology approach. These pathways are predicted to harbor a significant kinetic advantage over their natural counter parts, making them promising candidates for synthetic biology implementation.

Applications


  • Synthetic organisms utilizing this revolutionary technology can offer higher carbon fixation rates as compared to natural alternatives allowing:
  • Superior rate of biomass generation, providing cost effective feedstock for the production of biofuels.
  • Enhanced food production via increased crop yields.

Advantages


  • Minimal thermodynamic bottlenecks and superior kinetics over natural counterparts.

Technology's Essence


The productivity of carbon fixation cycles is limited by the slow rate and lack of substrate specificity of the carboxylating enzyme, RuBisCo. In his discovery Dr. Milo addresses the inefficiency of the carbon fixation process through an alternative cycle that is predicted to be two to three times faster than the Calvin–Benson cycle, employing the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle.

A computational strategy was applied, comparing kinetics, energetic and topology of all the possible pathways that can be assembled from all ~4,000 metabolic enzymes known in nature.

The results suggest a promising new family of synthetic carbon fixation pathways.

+
  • Prof. Ron Milo
1604
Novel reporter gene for magnetic resonance imaging applications.The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology and clinical medicine. Magnetic Resonance Imaging (MRI) is a widely used noninvasive clinical diagnostic...

Novel reporter gene for magnetic resonance imaging applications.The ability to image the duration and location of gene expression in vivo and noninvasively is imperative for the future of biology and clinical medicine. Magnetic Resonance Imaging (MRI) is a widely used noninvasive clinical diagnostic tool that offers views into deep tissues at exquisite spatial resolution. Recently, MRI has emerged as a valuable tool for monitoring the expression of genes by utilizing metal-complexed MRI agents to display transgene activity in vivo. However, administration of metal complexes into tissues and cells is challenging. Intra-cellular metalloproteins such as Ferritin have been utilized as endogenous MRI contrast agents, but offer relatively low sensitivity. The present technology provides a novel Ferritin-based transgene with enhanced MRI contrast.

 

Applications


  • Non-invasive imaging of gene expression in transgenic mice models.
  • Monitoring target gene expression in pre-clinical studies.
  • Long-term cell labeling and tracking.
  • Visualization of cellular- and gene-based therapeutics.

Advantages


  • Does not require delivery of exogenous substrate.
  • Enhanced MRI contrast over current Ferritin-based reporters.
  • Conversion to magnetite is achieved in physiological conditions and not by synthetic modification or by extreme heating. 

Technology's Essence


Ferritin, the main Iron storage intracellular protein, contains a paramagnetic ferryhydrate core, and thus was proposed as an endogenous MRI reporter gene. However, Ferritin provides relatively low sensitivity. One way to increase sensitivity of Ferritin is to convert the non-crystalline ferrihydrate in its core into crystal magnetite as has been done chemically, to form magneto-ferritin. The current method enhances the magnetic properties of Ferritin by engineering a Ferritin protein fused to a bacteria-derived peptide. This novel recombinant fusion protein facilitates conversion of ferrihydrate into crystal magnetite and by this induces MRI contrast. The new construct can serve for monitoring delivery and differentiation of cells in vivo in cellular based therapy. 

+
  • Prof. Michal Neeman
1646
Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series...

Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series in one continuous experiment.
In order to design and develop inhibitors for therapeutic purposes, the reaction mechanisms of enzymes must be understood. For biological applications, a common methodology of addressing this need is combining Rapid Freeze Quench with Electron Paramagnetic Resonance (RFQ)-EPR, which allows the trapping and analysis of short lived intermediates in chemical reactions. However, commercial RFQ-EPR devices are limited for high field EPR applications due to the demand of large sample volumes for each time point.
Prof. Goldfarb and her team built a new RFQ apparatus based on microfluidic flow and unique ejection and freezing systems, which can be used for collecting small volume samples in capillaries for high field EPR.

Applications


This technology, combined with the variety of W-band high resolution EPR technique (ENDOR, DEER and ESEEM) enables better mechanistic studies of enzymatic reactions, with an emphasis on structural transformations during the reaction, in an efficient and accurate way.


Advantages


  • Collecting all RFQ time points in one continues experiment.
  • Produce small volume samples in the range of a few µl, and handles small capillaries, for high field ERP.
  • An improved dead time of ~5ms, relative to the commercial RFQs with a typical dead-time of 5–10 ms.
  • Ease-of-use and speed.

Technology's Essence


The innovative apparatus consists of two main parts: the microfluidic device and the freeze-quench setup. The microfluidic device comprises a mixer, which mixes the two reacting solutions, a flow path where the reaction occurs, and a sprinkler from which the solution is sprayed out of the device. Prof. Goldfarb and her colleagues improved the common mixing device by adding a fast stream of nitrogen gas which mixes with the ejected reaction solution, and sprays the frozen aerosol out in tiny drops at high speed.
The innovative RFQ device was planned to have a cold solid surface on which the freezing happens rather than the traditional ejection into a cold liquid, in order to minimize the losses of the frozen solution. Moreover the plate rotates at a speed correlated to the flow speed of the solution, thus samples of different reaction times can freeze on a different radius. The frozen samples are then collected into quartz capillaries.

+
  • Prof. Daniella Goldfarb
1587
An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively. Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although...

An innovative technique to preserve and prolong shelf-life in crop-plants cost-effectively.
Different agricultural crops from Solanaceous species which include tomato, potato and eggplant, overcome oxidative stress by the production of steroidal glycoalkaloids (SGAs) and steroidal saponins. Although SGAs contribute to plant resistance to a wide range of pathogens and predators some are considered as toxic to humans, with potato known as most relevance to food safety.
This innovative technology offers improvement  of nutritional composition and prolonged shelf-life of Solanaceous species, which are widely consumed crop-plants with a market size of hundreds of billions of tones produced yearly worldwide.

Applications


Modification of steroidal glycoalkaloids and steroidal saponins compounds in plants can be used for two purposes:
1. Widely used crop-plants from Solanaceae species with reduced anti-nutritional components.  Leading to a longer shelf-life of crop-plants with safer nutritional compounds. 
2. Highly resistant modified plant with enriched toxic steroidal glycoalkaloids content for non-edible usage. 

Advantages


  • Prolongs shelf-life- by preventing post-harvest elevated toxicity levels.
  • Reduction of undesired anti-nutritional alkaloids, by means that do not affect other biological plant pathways.
  • Helps avoiding spoilage and toxicity of plants that manifest during storage and process.
  • Stress and pathogen-resistant plants for non-edible usage: Genetically modified plants with elevated toxic steroidal glycoalkaloids content will result in enhanced resistance to stress related factors. The outcome will also be prolonged shelf-life achieved in a clean economic manner (reduced need of pesticides/ insecticides).

Technology's Essence


The invention relates to key genes and enzymes on the biosynthesis pathway converting cholesterol to SGA. Biosynthesis involves an array of genes. Modulation of specific regulatory, transcription factor genes had enabled strict control of the production of steroidal alkaloids and glycosylated derivatives therefore.
Prof. Asaph Aharoni discovered the key genes in the biosynthesis of steroidal saponins and steroidal alkaloids in his lab at the Weizmann institute. He also developed a method for altering the gene expression and the production (reduction or elevation) of these components in plants from the Solanaceae species.

+
  • Prof. Asaph Aharoni
1629
A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.Nearly...

A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.
Nearly all methods analyze pathway activity in a global “atomistic” manner, based on an entire sample set, not attempting to characterize individual tumors. Other methods use detailed pathway activity mechanism information and other data that is unavailable in a vast majority of cancer datasets.
The new algorithm described here transforms gene-level information into pathway- level information, generating a compact and biologically relevant representation of each sample. This can be used as an effective prognostic and predictive tool that helps healthcare providers to find optimal treatment strategies for cancer patients. Furthermore, this method can be generically used for reducing the degrees of freedom in order to derive meaningful output from multi-dimensional data using limited knowns.

Applications


  • Personalized cancer treatment.
  • A tool for mining insight from large datasets with limited knowns.

Advantages


  • Provides personalized solutions.
  • Can be utilized for rare conditions with very limited known information.
  • Proved on real oncologic datasets.
  • A Generic unsupervised learning tool.

Technology's Essence


The algorithm analyzes NP pathways, one at a time, assigning a score DP(i) to each sample i and pathway P, which estimates the extent to which the behavior of pathway P deviates from normal, in sample i. To determine this pathway deregulation score the expression levels of those dP genes that belong to P using available databases are used. Each sample i is a point in this dP dimensional space; the entire set of samples forms a cloud of points, and the “principal curve” that captures the variation of this cloud is calculated. Then each sample is projected onto this curve. The pathway deregulation score is defined as the distance DP(i), measured along the curve, of the projection of sample i, from the projection of the normal samples.

 

+
  • Prof. Eytan Domany
  • Prof. Eytan Domany
1650
Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic Astaxanthin is produced from petrochemical sources; it contains unwanted stereoisomers and is...

Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic Astaxanthin is produced from petrochemical sources; it contains unwanted stereoisomers and is rejected by consumers who prefer natural Astaxanthin. Production of natural Astaxanthin in microalgae is laborious, expensive, and time-consuming.
Researchers at the Weizmann Institute used a combinatorial approach to construct bioengineered operons capable of modulating the expression levels of enzymes involved in the production of Astaxanthin. By combinatorial pairing of these genes in E. coli, they achieved natural Astaxanthin production 4-fold higher than previously reported.
The innovative method can challenge the deficiencies of natural Astaxanthin production in microalgae. Following scale-up and industrial development of the proprietary process, production of natural Astaxanthin has the potential to be considerably cheaper and competitive with the cost of synthesizing Astaxanthin.

Applications


  • Cost-effective Production of natural Astaxanthin for the nutraceuticals industry, animal feed industry, and others.
  • A doorway to the generation of many future products in E. coli, specifically metabolites that are produced in elaborate metabolic pathways.

Advantages


  • Full control over carotenoid accumulation profile.
  • Cheaper, straightforward generation of Astaxanthin in E. coli as opposed to generation in algae which involves high raw materials cost, land usage, air emissions etc.
  • Natural Astaxanthin as opposed to synthetic, uncontaminated with intermediate compounds and stereoisomers.

Technology's Essence


At Dr. Ron Milo’s lab researchers employed a method that uses the relatively short Ribosome Binding Site (RBS) sequence in a combinatorial manner. The methodology involves combinatorial pairing of target genes (Astaxanthin metabolic pathway enzymes) with a small set of RBS sequences and assembling them into a library of synthetic operons to explore protein expression space and to locate desired phenotypes in bacteria.
The researchers used a small set of RBS sequences to modulate in parallel the protein expression levels of multiple genes over several orders of magnitude. Using this approach, they were able to efficiently scan a large fraction of the Astaxanthin metabolic expression space with a manageable set of tested genotypes.

+
  • Prof. Ron Milo
1564
A new recyclable size-selective filtration device. Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with...

A new recyclable size-selective filtration device.

Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with well-defined sizes, which have application in the fields of optoelectronic devices, biomedicine, materials, and catalysis.

Researchers at the Weizmann Institute have fabricated supramolecular ultrafiltration membranes that can be used for filtration and size-selective chromatography of nanoparticles. The membranes are composed of a self-assembled three-dimensional fibrous network that is held together by reversible non-covalent interactions.

The membranes are robust, easy to fabricate, and recyclable.

Applications


  • Size-selective separation of semiconductor and metal nanoparticles
  • Uniformity and monodispersity of nanoparticles in solution.
  • Size exclusion chromatography of nanoparticles in the sub-5-nm size regime.

Advantages


  • Efficient and inexpensive

  • Fast and easy fabrication

  • Recyclable

  • Self-assembled

  • Dual application regime: filtration and/or chromatography


Technology's Essence


The recyclable supramolecular membranes are formed from unique perylene derivatives that are large and flat aromatic molecules. These molecules are insoluble in water and form a 3-D network over a solid support, which can be used for the separation of nanoparticles.

The filters can be subsequently recycled from this mixture using an organic solvent (e.g. dichloromethane), which separates the membrane material from the water-soluble nanoparticles, and reused without loss of performance.

This material is hence highly attractive for application in the field of nanotechnology.

+
  • Dr. Boris Rybtchinski
1611
Novel HIV-derived peptides for the treatment of T-cell related disorders.Autoimmune diseases affect millions of individuals worldwide and the cost of these diseases, in terms of actual treatment expenditures and lost productivity, is measured in billions of dollars annually. Uncontrolled activation of...

Novel HIV-derived peptides for the treatment of T-cell related disorders.Autoimmune diseases affect millions of individuals worldwide and the cost of these diseases, in terms of actual treatment expenditures and lost productivity, is measured in billions of dollars annually. Uncontrolled activation of T cells is a hallmark of many autoimmune diseases; prominent among these are rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and Type I diabetes. T cells also play a cardinal role in the rejection for organ transplantation or graft versus host disease. Currently available therapies such as immunosuppressive drugs suppress the patient's entire immune response, thereby increasing the risk of infection, and can cause toxic side effects to non-lymphoid tissues. The development of new immunosuppressive agents capable of selectively inhibiting the activation of T lymphocytes with minimal side effects is therefore desirable. The present invention provides novel peptides endowed with immunosuppressive activity, for the treatment of T-cell related conditions such as autoimmune, inflammatory and graft rejection disorders.

 

Applications


Treatment of various T-cell mediated pathologies including:

  • Autoimmune diseases.
  • Inflammatory disorders.
  • Graft rejection and graft-versus-host disease (GVHD).

 


Advantages


  • The peptides exhibit minimal toxicity.
  • The peptides are about 20 times more potent than the strongest peptide reported from the HIV envelope proteins.
  • The peptides are less hydrophobic than other gp41-derived peptides and as such are more readily soluble in aqueous solution.

Technology's Essence


A team of scientists from the Weizmann Institute has developed peptides, derived from the ectodomain of the HIV gp41 envelope protein, that are able to effectively inhibit T cell activation. These peptides are 20-fold more potent as immunosuppressive peptides compared to other HIV-derived immunosuppressive peptides. The novel gp41-derived peptides robustly attenuated autoimmune disease in vivo, as shown in an experimental autoimmune encephalomyelitis (EAE) animal model, while demonstrating minimal toxic effect in both in vivo and in vitro studies. Furthermore, the novel peptides are remarkably less hydrophobic than other HIV-derived peptides, and therefore can readily dissolve, facilitating their administration as therapeutic agents.

+
  • Prof. Yechiel Shai
1540
A novel TMS method that eliminates the restrictions of angular positioning, exciting more neurons per area of stimuli, in further areas of the brain.   Current TMS methods and TMS methods under development, suffer shortcomings of a highly specific directional electric field, which demands a precisely...

A novel TMS method that eliminates the restrictions of angular positioning, exciting more neurons per area of stimuli, in further areas of the brain.

 

Current TMS methods and TMS methods under development, suffer shortcomings of a highly specific directional electric field, which demands a precisely targeted application. Current methods are extremely sensitive to the movements of the patient or the device. Once a position is established the patient must remain still for the treatment. Furthermore, stable and reproducible positioning is costly and time-consuming.

 

Researchers at the Weizmann Institute developed a method to induce a rotating magnetic field in TMS applications, yielding optimal targeting of brain regions where correct orientation cannot be determined (e.g. via motor feedback). This innovative method can also stimulate brain regions with no preferred axonal orientation, and open new applications in diagnostics and research in neuronal cultures and rats, previously unresponsive to conventional TMS.

Applications


  • Accurate, cost-effective, enhanced rfTMS devices for treatment of depression, migraines and other mental disorders.
  • A novel model system in rats and neuronal cultures for development of diagnostics and therapeutics.

Advantages


  • Exciting more neurons in the same area of stimulation
  • Accessing areas in the brain that are currently unresponsive to conventional TMS.
  • No positional restrictions
  • Requires less voltage

Technology's Essence


The theory behind this technology involves the understanding that neural response is direction dependent. Neurons whose axons are parallel to the magnetic field will be most significantly stimulated. Additionally, factors of magnetic field, rise time and neural cooperatively play a role. All these are addressed by a rotating magnetic field creating anisotropy of angles that match the neurons’ orientation and the excitation of dendrites by applying pulses of the order of 1ms. This solution offers greater control over the TMS system.

+
  • Prof. Elisha Moses
1593
The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders.  To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools...

The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders. 
To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools is to allow individuals identification while maintaining sufficient resolution for accurate tracking.
The present technology provides a system that utilizes fluorescent fur dyes to differentially mark and track individuals within a group. Using a sensitive color camera and a newly designed tracking algorithm, behavior of groups may be recorded and analyzed with high temporal and spatial resolution.   
The technology further offers a method for characterizing the group’s interactions using the maximum entropy model.

 

Applications


 


Advantages


  • High spatial and temporal resolution – enabled by sensitive color video tracking.
  • Enables high detailed analysis of individual behavior within the group.
  • Suitable for community study of groups - limited only by available fur dyes.
  • Compatible with long-term analysis.
  • Simple, cost effective.
  • Minimal suffering and improved animal welfare.

  • Technology's Essence


    The present technology takes advantage of the fact that mice are nocturnal (active at night) animals, to mark their fur with different fluorescent dyes. Under ultraviolet light, the mice can be accurately and automatically tracked, over a number of days. As the mice are allowed to move freely in an interesting arena for exploration containing ramps, nest boxes and barriers (Figure 1), their trajectory and behavior are recorded using a sensitive color camera.
    The system further includes an image processing module which analyses the recorded images, calculates a spatiotemporal model and the nature of social interactions between individuals.
    Combining detailed behavioral and genetic analysis ate the level of individuals, in association with group analysis, may enable the identification of genetic and neuronal correlates of complex social interactions. 

    +
    • Prof. Alon Chen

    Pages