You are here

Category
Technology Name
Briefcase
Scientist
1679
A novel therapy for Triple Negative Breast Cancer (TNBC) using mAbs combinationBreast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) representing about 15% of all breast cancer cases, is the deadliest form of all breast cancer subtypes, and tends to affect...

A novel therapy for Triple Negative Breast Cancer (TNBC) using mAbs combination
Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) representing about 15% of all breast cancer cases, is the deadliest form of all breast cancer subtypes, and tends to affect women at a younger age. Unfortunately TNBC cannot be treated with the common receptor targeted therapies since it does not express these targets, the estrogen, progesterone and Her2/neu receptors. Therefor systemic treatment options are currently limited to cytotoxic chemotherapy. The lack of effective targeted therapies, resistance to chemotherapy, and early metastatic spread have contributed to the poor prognoses and outcomes associated with TNBC.
The current technology offers a novel therapeutic strategy for TNBC. The application of two novel, noncompetitive antibodies against EGFR, achieves a robust degradation EGFR resulting in tumor inhibition.

Applications


  • Novel and unique antibody targeted therapy for TNBC.
  • The novel anti EGFR antibodies can cooperate synergistically with the currently marketed EGFR antibodies.

Advantages


  • A promising therapeutic scenario to treat TNBC.
  • Enhanced EGFR degradation and improved anti-tumor activity, in contrast to clinically approved anti-EGFR mAbs, which display no cooperative effects.
  • Lysosomal EGFR degradation pathway induced by epitope-distinct antibody mixture may potentially lead to improved therapeutic outcome, and reduced resistance.

Technology's Essence


Prof. Yosef Yarden and his team demonstrated that a combination of novel antibodies that target distinct regions on the human EGF receptor resulted in its robust and synergistic down-regulation, leading to pronounced tumor growth inhibition. Furthermore, the combined mAbs induced lysosomal degradation of EGFR, while avoiding the recycling route. Such irreversible mode of EGFR degradation may potentially increase response rate or delay the onset of patient resistance.
Conversely, combining cetuximab and panitumumab, the mAbs routinely used to treat colorectal cancer patients, did not improve receptor degradation because they are both attracted to the same epitope on EGFR.

+
  • Prof. Yosef Yarden
1715
Preparation of Re-doped inorganic MoS2 nanoparticles with good sodium ion reversible intercalation properties, to be used as cathode material for next generation sodium ion batteries. Lithium ion batteries (LIB) are currently the leading energy storage solution used in many applications. But lithium is...

Preparation of Re-doped inorganic MoS2 nanoparticles with good sodium ion reversible intercalation properties, to be used as cathode material for next generation sodium ion batteries.
Lithium ion batteries (LIB) are currently the leading energy storage solution used in many applications. But lithium is both toxic and limited in quantity (hence expensive) and cannot supply the growing demand for energy storage units as well as the need for cleaner and safer technologies.
Sodium ion batteries (SIB) are attractive new generation batteries as they incorporate the much less toxic and much more abundant sodium ion.
Our novel nanoparticles were shown to have competitive electrochemical performances with specific capacity of about 130 mAh/g at 2C and 74 mAh/g at high discharge rate of 20C.

Applications


  • Electrode material for sodium ion batteries
  • Possible applications in magnesium ion batteries

Advantages


  • Competitive specific capacity
  • Improved electrical conductivity towards Na ions

Technology's Essence


The cathode material's reversible intercalation capacity plays a significant role in determining the total capacity of an energy cell. Intercalation requires entering of ions into the electrode material through diffusion channels.
The faceted structure of inorganic nanoparticles (IF) induces intrinsic dislocations and stacking faults which serve as ion diffusion channels. Doping of the nanoparticles increases both conductivity, due to n-type doping of the Mo metal, and the number of structural defects (hence diffusion channels), resulting in total increased electrical conductivity.
The synthetic procedure for producing Re-doped MoS2 nanoparticles is straightforward, based on known and published protocols.

+
  • Prof. Reshef Tenne
1749
Our novel technology provides an inexpensive, safe and clean solution for loading and unloading of hydrogen on demand with high potential hydrogen storage capacity. Hydrogen storage is currently the key hurdle to its utilization as an alternative green fuel. Being the smallest molecule, hydrogen is...

Our novel technology provides an inexpensive, safe and clean solution for loading and unloading of hydrogen on demand with high potential hydrogen storage capacity.
Hydrogen storage is currently the key hurdle to its utilization as an alternative green fuel. Being the smallest molecule, hydrogen is highly diffusive and buoyant. Currently, hydrogen is stored physically as a gas, requiring high-pressure tanks, or in liquid form at cryogenic temperatures, both methods require high energy input. Proposed chemical storage systems are based on relatively expensive materials, suffer from poor regeneration after hydrogen release and require elevated temperatures and pressures.
The presented technology utilizes inexpensive and abundant organic compounds that generate hydrogen gas during a chemical transformation. Hydrogen release and the regeneration of the original compound are performed in mild conditions using the same catalyst. This system is a promising candidate to be the basis of compact and cost-effective chemical hydrogen storage platforms.

Applications


  • High potential hydrogen storage capacity (6.6 wt%)
  • Inexpensive and readily available hydrogen carriers (aminoalcohols)
  • Relatively mild release and regeneration conditions

  • Advantages


    • Hydrogen-fueled systems, including fuel cells
    • High capacity hydrogen storage systems

    Technology's Essence


    The technology is based on aminoalcohols that are catalytically converted to cyclic dipeptides, while forming hydrogen gas, using a ruthenium pincer catalyst. Peptide hydrogenation, using the same catalyst, regenerates the aminoalcohol. The same method can be applied with diaminoalkanes and alcohols as well.
    The reaction requires a relatively low organic solvent volume, a catalytic amount of base (KOtBu) for the in situ generation of the active catalyst and mild reaction conditions in terms of hydrogen pressure (50 bar) and temperature (~100 oC). Repetitive cycles of the dehydrogenation-hydrogenation reactions can be performed without adding new catalyst, while maintaining high percentages of aminoalcohol conversion.

    +
    • Prof. David Milstein
    1686

    Applications


    • Co-treatment with chemotherapy
    • Co-treatment with statin treatmen

    Advantages


    • Lower collateral toxicities allow for greater flexibility in treatment dosage.
    • Enhanced patient survival rate.
    • More favorably considered as a line of therapy due to decreased side effects.
    • Utilization of well-characterized compounds alleviates safety and toxicity considerations.

    Technology's Essence


    ER stress, elicited by chemotherapeutic agents such as doxorubicin, 5FU, vincristine and bortezomib, or statins such simvastatin, triggers cell death at least in part through generation of leukotriene C4 (LTC4), which induces ROS accumulation, DNA damage and subsequent cell death. LTC4 can be produced by two parallel pathways. Cells of hematopoietic origin express C4 synthase (LTC4S) and secrete their LTC4 load, thereby affecting nearby tissues. In contrast, as discloses by the present invention, non-hematopoietic cells generate LTC4 by the enzyme MGST2 (an isoenzyme of LTC4S), and retain it to act internally leading to their demise. This difference is the basis for the present invention. Thus, LTC4 receptor antagonists (montelukast, pranlukast, etc.) will alleviate the toxicity of chemotherapy towards non-hematopoietic tissues and cells, but retaining the therapeutic effectiveness of chemotherapy on lymphocytic leukemia, lymphoma and myeloma patients. In conjuction, it was found that pranlukast attenuated cell death triggered by a broad range (0.5-4 µg/ml) of simvastatin (a statin) concentrations.

    +
    • Prof. Menachem Rubinstein
    1782
    L-DOPA is a high value compound used in the treatment of Parkinson’s disease and a precursor for other high value compounds. Current industrial methods for producing L-DOPA are problematic in terms of complexity, yield, or toxic byproducts.Betalains are robust, flavorless, natural water soluble dyes,...

    L-DOPA is a high value compound used in the treatment of Parkinson’s disease and a precursor for other high value compounds. Current industrial methods for producing L-DOPA are problematic in terms of complexity, yield, or toxic byproducts.
    Betalains are robust, flavorless, natural water soluble dyes, in the color ranges of both red-violet and yellow-orange. Currently there is no natural quality source for water soluble natural yellow dyes, with present natural yellow dyes being water insoluble.
    The present technology offers an alternative method that is simple, does not produce side-products, and is non-toxic with Tyrosine being the only feedstock. The technology produces L-DOPA and natural water soluble yellow and red Betalain dyes, both within yeast and in different plant species.

    Applications


    • Production of L-DOPA for use in pharmaceuticals or dietary supplements.
    • Synthesis of water soluble yellow and red natural dyes for use as colorants, antioxidants, and food supplements.
    • Altering coloration of ornamental plants by inserting the metabolic pathway.

    Advantages


    • One-step reaction for L-DOPA synthesis from Tyrosine.
    • Non-toxic and non-hazardous synthesis.
    • Ecologically friendly - no waste management issues.
    • Multiple colors can be produced with yellow, red, or orange if pathways combined.
    • Flavorless - avoid influencing the taste of different products.
    • Flexibility in biosynthetic production - multiple possible host systems.
    • Specificity - no side products produced
    • Mild Conditions - enzyme(s) requires ambient temperatures.

    Technology's Essence


    The present technology takes advantage of the Betalain biosynthetic pathway to selectively produce L-DOPA and natural Betalain dyes. A newly discovered, specific, cytochrome P450-CYP76AD6 begins the pathway, with the capacity to convert Tyrosine to L-DOPA. Then L-DOPA is converted to Betalamic acid via DOPA 4, 5-dioxygenase.
    With the Betalamic acid intermediate, the biosynthetic pathway diverges to make either Betaxanthins (yellow dyes) or Betacyanins (red dyes). In the production of yellow dyes an amine (e.g. amino acid) spontaneously reacts with Betalamic acid. In the case of red dyes, cycloDOPA (generated by the enzyme CYP76AD1 modifying Tyrosine and L-DOPA) and a Betalain-related glucosyltransferase react with Betalamic acid. Furthermore the two pathways can be done in parallel to produce an orange color.

     

    +
    • Prof. Asaph Aharoni
    1751
    Many cancer cells hijack and remodel existing metabolic pathways for their benefit. Specific targeting of these metabolic dependencies offers cancer patients increased efficiency and minimized side effects. Yet, the complexity of these pathways hinders the identification of targets. The present...

    Many cancer cells hijack and remodel existing metabolic pathways for their benefit. Specific targeting of these metabolic dependencies offers cancer patients increased efficiency and minimized side effects. Yet, the complexity of these pathways hinders the identification of targets.
    The present discovery elucidates the pathway by which argininosuccinate synthase (ASS1) down-regulation confer cancer progression. It shows that decreased activity of ASS1 in cancers supports proliferation by linking excess aspartate to pyrimidines synthesis. Importantly, these studies highlight Citrin (a mitochondrial aspartate transporter) inhibition as a potential method to decrease aspartate levels and selectively target this metabolic pathway in ASS1 depleted cancers.

    Applications


    • Targeted Treatment for ASS1 depleted cancers.

    Advantages


    • Targeted therapy, against a well defined pathway, increases the prospects for success.
    • Selective – targeting cancer metabolic dependency minimizes the chances for healthy cells damage that lead to side effects.

    Technology's Essence


    Cancer cells hijack and remodel existing metabolic pathways for their benefit in what is termed the Warburg effect. Researchers from Dr. Ayelet Erez's lab, at the Weizmann institute of Science, have delineated the metabolic benefit(s) conferred by loss of ASS1 to cancers. In agreement with previous experience, they found that ASS1 deficiency has an additional arginine- independent effect that is directly related to its substrate, aspartate.
    By focusing on the relevant physiological and pathological model systems, it was found that ASS1 deficiency-mediated increase in aspartate levels lead to excessive proliferation through pyrimidine synthesis. The link between the two is provided by CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, dihydroorotase complex) and the mTOR signaling pathway.
    Importantly, the present inventors have found that blocking Citrin, the mitochondrial aspartate transporter, rescues cell proliferation by reducing aspartate levels. Citrin may thus serve as a strong candidate for targeted therapy of ASS1 depleted cancers.   
    Supporting this model, retrospective survival analysis of several cancers reveal that cancers with both decreased ASS1 expression and high Citrin levels have a trend for significantly worse prognosis.

    +
    • Dr. Ayelet Erez
    1665
    Improved magnetic resonance imaging (MRI) for cardiac fibrosis and other fibrotic diseases.Myocardial fibrosis is associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness, significantly increasing the risk of adverse cardiac outcomes....

    Improved magnetic resonance imaging (MRI) for cardiac fibrosis and other fibrotic diseases.
    Myocardial fibrosis is associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness, significantly increasing the risk of adverse cardiac outcomes. Hypertension and diabetes elicit fibrotic processes in the heart, placing a high percentage of the western world population at risk, yet the early identification of fibrotic development in high-risk patients is hindered by lack of adequate fibrosis imaging modalities. This in turn leads to increased morbidity and additional financial burden to health care services. The current standard method to assess myocardial fibrosis employs the usage of MRI coupled with intravenous infusion of Gadolinium contrast agent. However, this method suffers from considerable drawbacks including reduced sensitivity (that permits diagnosis only at advanced stages of disease), lengthy scan times and toxicity of the contrast agent, which excludes a significant subset of patient populations from diagnosis. Thus, the capacity to diagnose myocardial fibrosis in its early stages would allow successful therapeutic intervention, and may also create a platform for the non-invasive study of fibrotic development, thereby facilitating the design of targeted therapies. The current invention is comprised of a novel cardiovascular magnetic resonance method with enhanced sensitivity, without the need for contrast agent administration.

    Applications


    • Detection of cardiac fibrosis due to various pathologies, including hypertension, diabetes and heart failure.
    • The method can be applied to detect fibrotic tissues in a broad range of disorders including cancer, renal fibrosis and pathologies related to skeletal muscles.
    • A platform for the clinical study of targeted therapies that may prevent or arrest fibrotic diseases.
    • Monitoring the efficacy of treatment tailored to target fibrotic tissue development.

     


    Advantages


    • The method relies on magnetization transfer to provide contrast, and therefore obviates the need for any extrinsic, toxic contrast agent such as Gadolinium.
    • Improved sensitivity over current contrast agent-based cardiac MRI methods.
    • The method can be readily applied to existing MRI clinical imaging systems.

    Technology's Essence


    A team of researchers at the Weizmann Institute has developed a novel approach for detection of myocardial fibrosis using magnetization transfer contrast (MCT) MRI cardiac imaging technology. The method was tested in vivo on animal models of heart failure and proved highly sensitive for detection of scar tissue formation and monitoring of fibrotic development. One prominent advantage of the present technology over current cardiac imaging modalities is that it eliminates the requirement for extrinsic contrast agents, thereby circumventing potential adverse toxic side effects.

    +
    • Prof. Michal Neeman
    1692
    Novel immunosupressive peptides, derived from the TM domain of the HIV protein gp41, with high selectivity towards distinct immune cell populations.Uncontrolled activity of immune cells is an underlying cause of both autoimmune and inflammatory diseases. One of the major challenges in the field is to...

    Novel immunosupressive peptides, derived from the TM domain of the HIV protein gp41, with high selectivity towards distinct immune cell populations.
    Uncontrolled activity of immune cells is an underlying cause of both autoimmune and inflammatory diseases. One of the major challenges in the field is to develop therapeutics that would target specific populations of immune cells, in order to avoid immune-deficiencies that would leave patients exposed to infections.
    The present invention provides novel peptides, based on Immunosupressive regions within the TM domain of the HIV gp41 fusion protein. These peptides were shown to specifically and efficiently inhibit T-cells and TNF? secretion from inflammatory macrophages. Importantly, these peptides were shown to have particular inhibitory effects towards T cells that are activated in a multiple sclerosis model. 

    Applications


    • Selective therapy towards T cell mediated autoimmune diseases (e.g. multiple sclerosis)
    • Selective therapy towards TNF?-associated inflammatory disorders

    Advantages


    • Specific towards defined cell populations – avoids general immune suppression
    • Significant efficiency towards MS-associated T-cell activation 

    Technology's Essence


    The present invention takes advantage of the potent immune evasion mechanisms that are utilized as part of the HIV virus pathogenesis. Gp41, a component of the virus envelop, is a transmembrane glycoprotein that mediates viral entry into cells of the immune system. In addition to its role in mediating the actual fusion event, gp41 has been shown to contain immunosuppressive activities that are attributed to its N terminus.
    Using biochemical and biophysical approaches, Prof. Shai and his team from the Weizmann institute, reveal yet another immunosuppressive activity of gp41, exerted via its transmembrane domain. Importantly, this immunosupressive activity was shown to be specific for T cell activation (mediated through binding to CD3/TCR complex) and Toll-Like Receptor (TLR)-mediated activation of macrophages.
    The present inventors generated synthetic peptides that derive from the gp41 trasmembrane domain and demonstrated their suppressive activity in both in-vitro and in-vivo models.
    Significantly, T-cell activation was inhibited following activation with a peptide associated with the propagation of multiple sclerosis (MOG 35-55), proposing a specific inhibitory activity towards MS-generating mechanisms. Macrophages inhibition was shown to significantly compromise the secretion of pro-inflammatory factors, predominantly TNF?, following LTA (lipotechoic acid) activation. 

     

    +
    • Prof. Yechiel Shai
    • Prof. Yechiel Shai
    1717
    Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of...

    Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of the absorber.
    Currently available systems, based on rare-earth-doped dielectrics, and organic materials are limited in both tunability and absorption cross-section. In fact, no known up-conversion systems operate on photons in the 1000-1500 nm range.
    Stable inorganic nanocrystalline up-conversion systems designed at the Weizmann Institute of Science provide broad tunability of both the absorption edge and the luminescence color. These materials have the potential to be utilized in applications such as high-energy photon sources, photovoltaics and IR detection.

    Applications


    • Easy to manufacture

    • Robust systems

    • Operation at room temperature


    Advantages


    • Photon sources

    • Photovoltaics

    • IR detectors


    Technology's Essence


    The new up-conversion systems are based on a novel design comprising a compound semiconductor nanocrystal, which incorporates two quantum dots with different bandgaps separated by a tunneling barrier. The expected up-conversion mechanism occurs by the sequential absorption of two photons. The first photon excites an electron–hole pair by interband absorption in the lower-energy core, resulting in a confined hole and a relatively delocalized electron. The second absorbed photon leads to further excitation of the hole, allowing it to cross the barrier layer. This, in turn, is followed by radiative recombination with the delocalized electron.

    +
    • Prof. Dan Oron
    1800
    A new software tool used for the removal of artifacts from transcranial magnetic stimulation (TMS) triggered electroencephalography (EEG) was developed by the group of Prof. Moses. The combined use of TMS with EEG allows for a unique measurement of the brain's global response to localized and abrupt...

    A new software tool used for the removal of artifacts from transcranial magnetic stimulation (TMS) triggered electroencephalography (EEG) was developed by the group of Prof. Moses.

    The combined use of TMS with EEG allows for a unique measurement of the brain's global response to localized and abrupt stimulations. This may allow TMS-EEG to be used as a diagnostic tool for various neurologic and psychiatric conditions.

    However, large electric artifacts are induced in the EEG by the TMS, which are unrelated to brain activity and obscure crucial stages of the brain's response. These artifacts are orders of magnitude larger than the physiological brain activity, and persist from a few to hundreds of milliseconds. However, no generally accepted algorithm is available that can remove the artifacts without unintentionally and significally altering physiological information.

    The software designed according to the model along with a friendly GUI is a powerful tool for the TMS-EEG field. The software has tested and proven to be effective on real datasets measured on psychiatric patients.

    Applications


    • TMS triggered EEG diagnostics

    Advantages


    • Easy to use software with a GUI
    • Exposes the full EEG from the brain

    Technology's Essence


    The new software tool is based on the observation that, contrary to expectation, the decay of the electrode voltage after the TMS pulse is a power law in time rather than an exponential. A model based on two dimensional diffusion of the accumulated charge from the high electric
    fields of the TMS in the skin was built. This model reproduces the artifact precisely, including the many perplexing artifact shapes that are seen on the different electrodes. Artifact removal software based on this model exposes the full EEG from the brain, as validated by continuously reconstructing 50Hz signals that are the same magnitude as the brain signals.

    +
    • Prof. Elisha Moses
    1753
    The Chiral Induced Spin Selectivity (CISS) effect, discovered in recent years by Prof. Ron Naaman from the Weizmann Institute of Science, implies that electrons transferred through chiral molecules possess a specific spin orientation. Hence, the molecular chirality and electron spin are correlated.A...

    The Chiral Induced Spin Selectivity (CISS) effect, discovered in recent years by Prof. Ron Naaman from the Weizmann Institute of Science, implies that electrons transferred through chiral molecules possess a specific spin orientation. Hence, the molecular chirality and electron spin are correlated.
    A team of researchers lead by Prof. Naaman have been investigating the CISS effect in different systems. They found that the high efficiency of many natural multiple electron reactions can also be attributed to spin alignment of the electrons involved.
    The present innovation looks at hydrogen production through water electrolysis, showing that when using anodes coated by chiral molecules the efficiency of the electrolysis process increases by 30% compared to using uncoated, regular electrodes.

    Applications


  • Control of electron spin
  • Significant reduction of over-potential in spin sensitive electrochemical reactions
  • Efficient electrochemical processes
  • Minimum side reactions

  • Advantages


     

    Technology's Essence


    Spin selective electrodes made from standard electrode material are coated with chiral molecules. These coated electrodes were used for electrolysis of water and showed superior efficacy compared to standard un-coated electrodes, by reduction of the over-potential required for the process. This is explained by the spin selective electron conduction through the chiral layer:

     

     

     

    Hydrogen production as a function of time for (A) the chiral molecules and (B) for the achiral molecules. The potentials in the brackets refer to the over-potential compared to DNA coated electrode. The measurements were conducted at the Eapp for each of the molecules.

     

    +
    • Prof. Ron Naaman
    1671
    A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined...

    A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined conditions required for derivation and long term maintenance of such cells, without genetic modification.
    Human naive pluripotent cells can be robustly derived either from already established conventional hESC lines, through iPSC reprogramming of somatic cells, or directly from ICM of human blastocysts. The new human pluripotent state was isolated and characterized; it can open up new avenues for patient specific disease relevant research and the study of early human development.

    Applications


    • Reprogramming kits - Somatic cells to iPSC at near 100% efficiency (7days), iPSC to fully naive state.

    Advantages


    • Deterministic iPSC reprogramming with no genetic modification required.
    • Stable pluripotency, with low propensity for differentiation
    • Reagents available off-the-shelf.

    Technology's Essence


    Hallmark features of rodent naive pluripotency include driving Oct4expression by its distal enhancer, retaining a pre-inactivation state of X chromosome in female pluripotent cell lines amongst others. Naive mouse ESCs epigenetically drift towards a primed pluripotent state; while human embryonic stem cells (hESCs) share several molecular features with naive mESCs (e.g. expression of NANOG, PRDM14 and KLF4 naive pluripotency promoting factors), they also share a variety of epigenetic properties with primed murine Epiblast stem cells (mEpiSCs). These observations have raised the question of whether conventioal human ESCs and induced pluripotent stem cells (iPSCs) can be epigenetically reprogrammed into a different pluripotent state, extensively similar with rodent na?ve pluripotency. Researchers at the Weizmann Institute discovered that supplementation of certain chemically defined conditions, synergistically facilitates the isolation and maintenance of pluripotent stem cells that retain growth characteristics, molecular circuits, a chromatin landscape, and signaling pathway dependence that are highly similar to naive mESCs, and drastically distinct from conventional hESCs.

    +
    • Dr. Jacob (Yaqub) Hanna
    1610
    A novel method for increasing Insulin content in pancreatic beta cells. In healthy individuals, Insulin is produced by beta cells of the pancreas. In people with type 1 diabetes mellitus (T1DM), these cells do not produce enough Insulin to effectively fine-tune blood sugar levels. In the US alone...

    A novel method for increasing Insulin content in pancreatic beta cells.

    In healthy individuals, Insulin is produced by beta cells of the pancreas. In people with type 1 diabetes mellitus (T1DM), these cells do not produce enough Insulin to effectively fine-tune blood sugar levels. In the US alone there are up to 3 million affected individuals with 30,000 new cases diagnosed each year. Worldwide, T1DM incidence has been increasing in recent years by 2% to 5%. Traditionally treated by multiple daily injections of recombinant Insulin, T1DM management represents a significant burden to both patients and the healthcare system. Recent data estimate that T1DM costs the US ~$15 billion annually in medical costs and lost income. Thus, novel therapeutic approaches to amplify Insulin production in diseased beta cells or to replace them entirely are in great need. The present technology describes a cell-based method to enhance beta cell differentiation and Insulin production by the downregulation of a pancreas-enriched microRNA.

     

    Applications


    • Cell replacement therapy: directed differentiation of stem cells towards a beta cell fate followed by transplantation of these engineered cells into patients.
    • These methods can potentially be applied to other Insulin deficiency-related conditions such as diabetes mellitus type 2, metabolic syndrome and obesity.

    Advantages


    • Simple and robust method for accelerating beta cell differentiation.
    • Cell base therapy for diabetes.
    • Increasing Insulin level.

    Technology's Essence


    A research team headed by Dr. Hornstein from the Weizmann Institute has discovered an essential role for microRNA-7 (miR-7), a microRNA that is highly and selectively expressed in the endocrine pancreas, in the regulation of beta cell differentiation. By down-regulating the expression of miR-7, the researchers were able to accelerate beta cell differentiation, and concomitantly to augment their Insulin production rate. The data gained from these studies can be further utilized in cell-based therapy applications to restore Insulin production in damaged beta cells, or alternately to replace these cells with stem cells coaxed to differentiate towards a beta cell fate.

     

    +
    • Dr. Eran Hornstein
    1647
    Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-...

    Novel algorithms developed at the Weizmann Institute of Science for Content-Based Image Retrieval (CBIR) can enhance search engines by crowd-sourcing and improved clustering.
    Discovering visual categories among collection of images is a long standing challenge in computer vision, which limits images-based search engines. Existing approaches are searching for a common cluster model. They are focused on identifying shared visual properties (such as a shared object) and subsequently grouping the images into meaningful clusters based upon these shared properties. Such methods are likely to fail once encountering a highly variable set of images or a fairly limited number of images per category.
    Researchers form Prof. Michal Irani lab suggest a novel approach based on ‘similarity by composition’. This technology detects statistically significant regions which co-occur across images, which reveals strong and meaningful affinities, even if they appear only in few images. The outcome is a reliable cluster in which each image has high affinity to many images in the cluster, and weak affinity to images outside the cluster.

    Applications


    • Images search engines - can be applied for collaborative search between users.
    • Detecting abnormalities in medical imaging.
    • Quality assurance in the fields of agriculture, food, pharmaceutical industry etc.
    • Security industry- from counting people up to identifying suspicious acts.
    • Computer games and brain machine interface.

    Advantages


    • Can be applied to very few images, as well as benchmark datasets, and yields state-of-the-art results.
    • Handles large diversity in appearance.
    • The search is not a global search, it requires no semantic query, tagging or pre-existing knowledge.
    • The multi-images collaboration significantly speeds up the process, reducing the number of random samples and iterations.
    • Set of images are obtained in time which is nearly linear in the size of the image collection.


    Technology's Essence


    In “clustering by composition”, a good cluster is referred as one in which each image can be easily composed using statistically significant pieces from other images in the cluster while is difficult to compose from images outside the cluster. Multiple images exploit their ‘wisdom of crowds’ to further improve the process. Using a collaborative randomized search algorithm images can be composed from each other simultaneously and efficiently. This enables each image to direct the other images where to search for similar regions within the image collection. The resulted sets of images affinities are sparse yet meaningful and reliable.

    +
    • Prof. Michal Irani
    1559
    The Weizmann Institute is actively seeking a company interested in commercializing a novel technology that reduces sulfur content in refined fuels. Fossil fuels sources such as oil, coal, natural gas, shales and others contain varying amounts of sulfur compounds. As world reserves of high quality...

    The Weizmann Institute is actively seeking a company interested in commercializing a novel technology that reduces sulfur content in refined fuels. Fossil fuels sources such as oil, coal, natural gas, shales and others contain varying amounts of sulfur compounds. As world reserves of high quality fossil fuels diminish and regulatory standards tighten on reduced levels of sulfur containing emissions, the need for effective methods for removal of refractory sulfides from refined fuels arises.

    This invention makes use of a catalytic reaction to remove refractory sulfides from refined fuels thereby enabling the reduction and removal of sulfides. The catalyst is then purified by aerobic oxidation (low temperature combustion) and reused.

    Applications


    • Desulfurization of fuels in oil refineries - useful for deep desulfurization of fuels containing relatively small amounts of organic sulfur compounds.

    Advantages


    • The process does not require high pressure hydrogen and can be carried out at low temperature.

    • The process complements present HDS technology tp remove refractory sulfides.

    • Catalyst recovery and recycle is carried out by low temperature pyrolysis.

    • No need for additional separation or adsorption processes.

    • No need for additional fuel drying steps.


    Technology's Essence


    The invention relates to a method for removing heteroaromatic, refractory sulfides down to sub-ppm levels from refined fuels such as gasoline, diesel oil and kerosene. The process uses a heterogeneous catalyst that reacts with the refractory sulfides and oligomerizes or polymerizes them to insoluble polymers that are adsorbed on the catalyst. After use, the catalyst is recovered and purified by low temperature aerobic total oxidation (combustion) reused. This process completes desulfurization of fuels in oil refineries.

    +
    • Prof. Ronny Neumann

    Pages