You are here

Category
Technology Name
Briefcase
Scientist
1686

Applications


  • Co-treatment with chemotherapy
  • Co-treatment with statin treatmen

Advantages


  • Lower collateral toxicities allow for greater flexibility in treatment dosage.
  • Enhanced patient survival rate.
  • More favorably considered as a line of therapy due to decreased side effects.
  • Utilization of well-characterized compounds alleviates safety and toxicity considerations.

Technology's Essence


ER stress, elicited by chemotherapeutic agents such as doxorubicin, 5FU, vincristine and bortezomib, or statins such simvastatin, triggers cell death at least in part through generation of leukotriene C4 (LTC4), which induces ROS accumulation, DNA damage and subsequent cell death. LTC4 can be produced by two parallel pathways. Cells of hematopoietic origin express C4 synthase (LTC4S) and secrete their LTC4 load, thereby affecting nearby tissues. In contrast, as discloses by the present invention, non-hematopoietic cells generate LTC4 by the enzyme MGST2 (an isoenzyme of LTC4S), and retain it to act internally leading to their demise. This difference is the basis for the present invention. Thus, LTC4 receptor antagonists (montelukast, pranlukast, etc.) will alleviate the toxicity of chemotherapy towards non-hematopoietic tissues and cells, but retaining the therapeutic effectiveness of chemotherapy on lymphocytic leukemia, lymphoma and myeloma patients. In conjuction, it was found that pranlukast attenuated cell death triggered by a broad range (0.5-4 µg/ml) of simvastatin (a statin) concentrations.

+
  • Prof. Menachem Rubinstein
1753
The Chiral Induced Spin Selectivity (CISS) effect, discovered in recent years by Prof. Ron Naaman from the Weizmann Institute of Science, implies that electrons transferred through chiral molecules possess a specific spin orientation. Hence, the molecular chirality and electron spin are correlated.A...

The Chiral Induced Spin Selectivity (CISS) effect, discovered in recent years by Prof. Ron Naaman from the Weizmann Institute of Science, implies that electrons transferred through chiral molecules possess a specific spin orientation. Hence, the molecular chirality and electron spin are correlated.
A team of researchers lead by Prof. Naaman have been investigating the CISS effect in different systems. They found that the high efficiency of many natural multiple electron reactions can also be attributed to spin alignment of the electrons involved.
The present innovation looks at hydrogen production through water electrolysis, showing that when using anodes coated by chiral molecules the efficiency of the electrolysis process increases by 30% compared to using uncoated, regular electrodes.

Applications


  • Control of electron spin
  • Significant reduction of over-potential in spin sensitive electrochemical reactions
  • Efficient electrochemical processes
  • Minimum side reactions

  • Advantages


     

    Technology's Essence


    Spin selective electrodes made from standard electrode material are coated with chiral molecules. These coated electrodes were used for electrolysis of water and showed superior efficacy compared to standard un-coated electrodes, by reduction of the over-potential required for the process. This is explained by the spin selective electron conduction through the chiral layer:

     

     

     

    Hydrogen production as a function of time for (A) the chiral molecules and (B) for the achiral molecules. The potentials in the brackets refer to the over-potential compared to DNA coated electrode. The measurements were conducted at the Eapp for each of the molecules.

     

    +
    • Prof. Ron Naaman
    1665
    Improved magnetic resonance imaging (MRI) for cardiac fibrosis and other fibrotic diseases.Myocardial fibrosis is associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness, significantly increasing the risk of adverse cardiac outcomes....

    Improved magnetic resonance imaging (MRI) for cardiac fibrosis and other fibrotic diseases.
    Myocardial fibrosis is associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness, significantly increasing the risk of adverse cardiac outcomes. Hypertension and diabetes elicit fibrotic processes in the heart, placing a high percentage of the western world population at risk, yet the early identification of fibrotic development in high-risk patients is hindered by lack of adequate fibrosis imaging modalities. This in turn leads to increased morbidity and additional financial burden to health care services. The current standard method to assess myocardial fibrosis employs the usage of MRI coupled with intravenous infusion of Gadolinium contrast agent. However, this method suffers from considerable drawbacks including reduced sensitivity (that permits diagnosis only at advanced stages of disease), lengthy scan times and toxicity of the contrast agent, which excludes a significant subset of patient populations from diagnosis. Thus, the capacity to diagnose myocardial fibrosis in its early stages would allow successful therapeutic intervention, and may also create a platform for the non-invasive study of fibrotic development, thereby facilitating the design of targeted therapies. The current invention is comprised of a novel cardiovascular magnetic resonance method with enhanced sensitivity, without the need for contrast agent administration.

    Applications


    • Detection of cardiac fibrosis due to various pathologies, including hypertension, diabetes and heart failure.
    • The method can be applied to detect fibrotic tissues in a broad range of disorders including cancer, renal fibrosis and pathologies related to skeletal muscles.
    • A platform for the clinical study of targeted therapies that may prevent or arrest fibrotic diseases.
    • Monitoring the efficacy of treatment tailored to target fibrotic tissue development.

     


    Advantages


    • The method relies on magnetization transfer to provide contrast, and therefore obviates the need for any extrinsic, toxic contrast agent such as Gadolinium.
    • Improved sensitivity over current contrast agent-based cardiac MRI methods.
    • The method can be readily applied to existing MRI clinical imaging systems.

    Technology's Essence


    A team of researchers at the Weizmann Institute has developed a novel approach for detection of myocardial fibrosis using magnetization transfer contrast (MCT) MRI cardiac imaging technology. The method was tested in vivo on animal models of heart failure and proved highly sensitive for detection of scar tissue formation and monitoring of fibrotic development. One prominent advantage of the present technology over current cardiac imaging modalities is that it eliminates the requirement for extrinsic contrast agents, thereby circumventing potential adverse toxic side effects.

    +
    • Prof. Michal Neeman
    1722
    Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater...

    Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.
    Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater versatility has been achieved. This technology is one such application of a novel POM catalyst and is exploited to cleave carbon-carbon double bonds in alkenes (olefins) through an aerobic oxidation reaction. Oxidation reactions are of particular interest because they are difficult to achieve on an industrial scale while maintaining “green” chemistry practices. [1]

    --------------------------------------------------------------------------------
    [1] Green Chem., 2007, 9, 717-730

    Applications


    • As a novel catalyst in industrial organic chemistry processes
    • Sold as a stand-alone catalyst for laboratory or individual use

    Advantages


    • Environmentally friendly oxidation reaction
    • Easy catalyst regeneration

    Technology's Essence


    Our approach is motivated by societal considerations that demand environmentally benign and sustainable solutions for oxidative reactions. As such, we have developed a scheme to react NO2 with a transition-metal-substituted POM which yields a metal-nitro intermediate that is competent for forming the precursors for oxidation with molecular oxygen, O2, to have a final product of ketones and/or aldehydes, and regenerate the POM catalysts.[1]
    This method has preference towards di/tri-substituted alkenes. High yields of ketones or aldehydes have been produced and the POM catalyst is regenerated without further oxidation to carboxylic acids, as is typical with other oxidative catalysts.
    The selective cleavage of carbon-carbon double or triple bonds with metal-nitro or metal-nitrito compound has not been reported. This exciting new discovery could lead to a wide variety of organic reactions not previously possible, along with revolutionary green oxidative chemistry techniques.

    --------------------------------------------------------------------------------
    [1] J. Am. Chem. Soc., 2014, 136(31), pp10941-10948 

    +
    • Prof. Ronny Neumann
    1802
    A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations. Pulses are applied in various fields such as oil & gas...

    A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations.
    Pulses are applied in various fields such as oil & gas exploration, detection (e.g. sonar, lidar and radar) and communication. When pulses pass through dispersive media, the arrival times at the detector of different frequency components may differ, and as a result the pulse may become degraded (e.g. transformed to a longer pulse with reduced intensity), even to the level of becoming indistinguishable in terms of signal to noise. This problem becomes even more challenging when detecting short pulses that travel through complex or unknown media.
    The new method presented here provides a proven and efficient solution that can be applied for different scenarios where short pulses dispersed by complex media are used. 

    Applications


    • Detection and surveying technologies- sonar, lidar, radar etc

    Advantages


    • Efficient, requires limited computational resources
    • Generic, can be applied to various setups
    • Easily implementable into existing systems

    Technology's Essence


    The method includes obtaining an input array of cells, each indicating an intensity of a frequency component of the signal at a representative time. A fast dispersion measure transform (FDMT) is applied to concurrently sum the cells of the input array that lie along different dispersion curves, each curve defined by a known non-linear functional form and being uniquely characterized by a time coordinate and by a value of the dispersion measure. Application of FDMT includes initially generating a plurality of sub-arrays, each representing a frequency sub-band and iteratively combining pairs of adjacent sub-arrays in accordance with an addition rule until all of the initially generated plurality of sub-arrays are combined into an output array of the sums, in which a cell of the output array that is indicative of a transmitted pulse is identified.

    +
    • Prof. Avishay Gal-Yam
    1692
    Novel immunosupressive peptides, derived from the TM domain of the HIV protein gp41, with high selectivity towards distinct immune cell populations.Uncontrolled activity of immune cells is an underlying cause of both autoimmune and inflammatory diseases. One of the major challenges in the field is to...

    Novel immunosupressive peptides, derived from the TM domain of the HIV protein gp41, with high selectivity towards distinct immune cell populations.
    Uncontrolled activity of immune cells is an underlying cause of both autoimmune and inflammatory diseases. One of the major challenges in the field is to develop therapeutics that would target specific populations of immune cells, in order to avoid immune-deficiencies that would leave patients exposed to infections.
    The present invention provides novel peptides, based on Immunosupressive regions within the TM domain of the HIV gp41 fusion protein. These peptides were shown to specifically and efficiently inhibit T-cells and TNF? secretion from inflammatory macrophages. Importantly, these peptides were shown to have particular inhibitory effects towards T cells that are activated in a multiple sclerosis model. 

    Applications


    • Selective therapy towards T cell mediated autoimmune diseases (e.g. multiple sclerosis)
    • Selective therapy towards TNF?-associated inflammatory disorders

    Advantages


    • Specific towards defined cell populations – avoids general immune suppression
    • Significant efficiency towards MS-associated T-cell activation 

    Technology's Essence


    The present invention takes advantage of the potent immune evasion mechanisms that are utilized as part of the HIV virus pathogenesis. Gp41, a component of the virus envelop, is a transmembrane glycoprotein that mediates viral entry into cells of the immune system. In addition to its role in mediating the actual fusion event, gp41 has been shown to contain immunosuppressive activities that are attributed to its N terminus.
    Using biochemical and biophysical approaches, Prof. Shai and his team from the Weizmann institute, reveal yet another immunosuppressive activity of gp41, exerted via its transmembrane domain. Importantly, this immunosupressive activity was shown to be specific for T cell activation (mediated through binding to CD3/TCR complex) and Toll-Like Receptor (TLR)-mediated activation of macrophages.
    The present inventors generated synthetic peptides that derive from the gp41 trasmembrane domain and demonstrated their suppressive activity in both in-vitro and in-vivo models.
    Significantly, T-cell activation was inhibited following activation with a peptide associated with the propagation of multiple sclerosis (MOG 35-55), proposing a specific inhibitory activity towards MS-generating mechanisms. Macrophages inhibition was shown to significantly compromise the secretion of pro-inflammatory factors, predominantly TNF?, following LTA (lipotechoic acid) activation. 

     

    +
    • Prof. Yechiel Shai
    • Prof. Yechiel Shai
    1765
    A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron.  Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns....

    A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron. 
    Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns. These techniques utilize radiation in the X-ray regime to image non-periodic objects in sizes that prohibit the use of larger wavelengths. However, retrieving the phase information of the diffraction pattern is not a trivial task, as current methods are divided based on a tradeoff between experimental complexity and computational reconstruction efficiency.
    The method described here is suitable for use with existing lensless imaging techniques to provide direct, robust and efficient phase data while requiring reduced computational and experimental complexity. This method, demonstrated in a laboratory setup on 2D objects, is also applicable in 1D. It can be applied to various phase retrieval applications such as coherent diffractive imaging and ultrashort pulse reconstruction

    Applications


    • Phase microscopy
    • Signal processing
    • Holography
    • X-ray imaging

    Advantages


    • A Generic solution to the phase retrieval problem
    • Non-iterative approach
    • An efficient and noise robust tool

    Technology's Essence


    The method is based on the fact that the Fourier transform of the diffraction intensity measurement is the autocorrelation of the object. The autocorrelation and cross-correlations of two sufficiently separated objects are spatially distinct. Based on this, the method consists of three main steps: (a) The sum of the objects’ autocorrelations, as well as their cross-correlation, are reconstructed from the Fourier transform of the measured diffraction pattern. (b) The individual objects’ autocorrelations are reconstructed from their sum and the cross-correlation. (c) Using the two intensities and the interference cross term, double-blind Fourier holograph is applied to recover the phase by solving a set of linear equations.

    +
    • Prof. Dan Oron
    1671
    A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined...

    A novel method to revert human iPSC to a fully naive state, retaining stable pluripotency. The feasibility for the existence of ground state naive pluripotency in human embryonic stem cells (hESC) has long been researched. This innovative technology supplies the composition of chemically defined conditions required for derivation and long term maintenance of such cells, without genetic modification.
    Human naive pluripotent cells can be robustly derived either from already established conventional hESC lines, through iPSC reprogramming of somatic cells, or directly from ICM of human blastocysts. The new human pluripotent state was isolated and characterized; it can open up new avenues for patient specific disease relevant research and the study of early human development.

    Applications


    • Reprogramming kits - Somatic cells to iPSC at near 100% efficiency (7days), iPSC to fully naive state.

    Advantages


    • Deterministic iPSC reprogramming with no genetic modification required.
    • Stable pluripotency, with low propensity for differentiation
    • Reagents available off-the-shelf.

    Technology's Essence


    Hallmark features of rodent naive pluripotency include driving Oct4expression by its distal enhancer, retaining a pre-inactivation state of X chromosome in female pluripotent cell lines amongst others. Naive mouse ESCs epigenetically drift towards a primed pluripotent state; while human embryonic stem cells (hESCs) share several molecular features with naive mESCs (e.g. expression of NANOG, PRDM14 and KLF4 naive pluripotency promoting factors), they also share a variety of epigenetic properties with primed murine Epiblast stem cells (mEpiSCs). These observations have raised the question of whether conventioal human ESCs and induced pluripotent stem cells (iPSCs) can be epigenetically reprogrammed into a different pluripotent state, extensively similar with rodent na?ve pluripotency. Researchers at the Weizmann Institute discovered that supplementation of certain chemically defined conditions, synergistically facilitates the isolation and maintenance of pluripotent stem cells that retain growth characteristics, molecular circuits, a chromatin landscape, and signaling pathway dependence that are highly similar to naive mESCs, and drastically distinct from conventional hESCs.

    +
    • Dr. Jacob (Yaqub) Hanna
    1733
    The spatial distribution of proteins inside the cell is under tight regulation. This regulation is necessary to ensure proper functioning of the cell, and is of particular importance when extracellular stimulation is applied. Upon stimulation, many signaling proteins rapidly and dynamically change...

    The spatial distribution of proteins inside the cell is under tight regulation. This regulation is necessary to ensure proper functioning of the cell, and is of particular importance when extracellular stimulation is applied. Upon stimulation, many signaling proteins rapidly and dynamically change their location. Today, there is a widely recognized need to identify novel sequences which regulates nuclear translocation.
    Recently, Prof. Zeger and his team discovered a new level of regulation to stimulated transcription. They showed that ?-like importunes are central mediators of nuclear translocation of signaling proteins. Furthermore they identified the site of interaction and designed accordingly a peptide which was found to prevent nuclear translocation.
    This technology presents peptides with the potential of treating inflammatory and immune disease by regulating (prevent or promote) the translocation of proteins into the nucleus.

    Applications


    • Inflammation
    • Immune diseases

    Advantages


    • Effective
    • Safe

    Technology's Essence


    The researchers found that ?-like importins play a key role in JNK and p38 translocation. They also found that the translocation of these MAPKs is mediated by the formation of either Imp3/Imp7/MAPK or Imp3/Imp9MAPK heterodimers. Most importantly, the researchers identified the site in p38 that mediate the interaction with Imp7 and Imp9 and showed that the important sequence lies within residues 20-30 of p38?. Subsequently they synthesized a 14 amino acid myristoylated peptide based on the sequence of residues 21-34 of p38?. When it was applied to HeLa cells prior to stimulation, it prevented the nuclear translocation and Imp7/9 interaction of the MAPKs. Since the peptides of this technology are able to specifically inhibit the nuclear activities of p38 (such as inflammatory activities) without modulating their cytoplasmic activities, these peptides may serve as a therapeutic agent for inflammatory and apoptosis related diseases without having side effect.

     

    +
    • Prof. Rony Seger
    1704
    Neuropathic Gaucher’s (nGD), is a rare but very severe manifestation of the disease, with a varying degree of involvement of the central nervous system, in addition to systemic symptoms. As of today, there is no cure for these severe conditions. The search for such cure is tremendously hindered by the...

    Neuropathic Gaucher’s (nGD), is a rare but very severe manifestation of the disease, with a varying degree of involvement of the central nervous system, in addition to systemic symptoms. As of today, there is no cure for these severe conditions.
    The search for such cure is tremendously hindered by the unmet need for a reliable biochemical biomarker for nGD.
    The present invention identifies the glycoprotein non-metastatic B (GPNMB) as a potential powerful nGD biomarker for use in early diagnosis, determination of disease severity, as well as a straight forward readout in clinical and preclinical experiments.

    Applications


    Diagnosis and drug development for neuropathic GD

    Advantages


    Straight forward diagnostic tool – based on standard biochemical assays
    Relatively simple clinical procedure – samples are collected from CSF and not brain
    High sensitivity – for the diagnosis of disease severity
    Compatible with preclinical experiments

    Technology's Essence


    Prof. Futerman and his team preformed a quantitative global proteomic analysis (using LC-MS/MS) of cerebrospinal fluid (CSF) samples from four patients with Type 3 GD, to identify mis-regulated proteins, compared with healthy subject.
    Glycoprotein non-metastatic B (GPNMB), a protein that was previously associated with several lysosomal storage disorders, exhibited very high levels (a 42-fold increase) in the CSF of type 3 GD patients.  Two peptides were identified from GPNMB, both located in the non-cytosolic domain, suggesting that GPNMB is cleaved and secreted into the CSF from the brain. LC-MS/MS results were validated by ELISA and by western blot analysis in CSF and in human brain samples.
    Several proof of principle experiments were conducted in order to prove the validity of using GPNMB as a biomarker for monitoring disease state and treatments efficacy in neuropathic GD in patients and mouse models:
    GPNMB levels were shown to be correlated with the severity of type 3 Gaucher’s disease patients, as measured by lower IQ score and lower score in Purdue Pegboard test, assessing eye-hand coordination. In addition, using conduritol b epoxide (CBE)-injection based mouse model that simulate different severities and recovery periods, it was shown that GPNMB levels rapidly rise or decline to reliably reflect progress/remission states of the diseases.

    +
    • Prof. Anthony H. Futerman
    1780
    A method based on Fast Neutron Resonance Transmission (FNRT) radiography that enables determining weight percentages of oil and water in thick, intact cores taken from subterranean or underwater geological formations. As part of geological exploitation to find oil and water, cores are extracted and...

    A method based on Fast Neutron Resonance Transmission (FNRT) radiography that enables determining weight percentages of oil and water in thick, intact cores taken from subterranean or underwater geological formations. As part of geological exploitation to find oil and water, cores are extracted and tested to determine oil/water content.
    This new method allows determining such content rapidly, in non- destructive, specific and quantities analysis of the cores.

    Applications


    • Determining the identity and proportions of substances of oil and water content and their distribution in inspected cores

    Advantages


    • A non-destructive method which enables to determine the fluid content along the entire length of an intact core or aggregate of cores within their protective sleeves.
    • More comprehensive information and considerable saving of analysis time compared to conventional sampling methods.
      Suitable for all types of rocks including tight-shale rocks.
    • This method enables to measure the weight fraction of oil and water in the core regardless of the core shape, thickness or distribution.
    • The fluid weight fractions in the samples are determined independently, thus the ratio of oil-to-rock weight-ratio is independent of the water content.
    • Due to high penetration of fast neutrons, the method is suitable for screening intact thick rock cores (10-15 cm), for which alternative probes, such as X-rays or slow neutrons suffer limited penetration.

    Technology's Essence


    In order to map the oil and water content and their distribution, an aggregate of intact cores within their protective sleeves is positioned on a moving conveyor belt and scanned by a broad- energy, fast- neutron beam. The neutrons are detected by a spectroscopic fast neutron imaging detector. The map of neutron-transmission spectra in each pixel provides information of oil/water content and distribution in such cores. 

    +
    • Prof. Amos Breskin
    1676
    A novel renewable energy method for storage of concentrated solar power (CSP) thermal energy directly to electrochemical energy that can be used for for distribution.A crucial issue for CSP technologies today is providing energy capable of dispatchable generation, that is, sources of electricity whose...

    A novel renewable energy method for storage of concentrated solar power (CSP) thermal energy directly to electrochemical energy that can be used for for distribution.
    A crucial issue for CSP technologies today is providing energy capable of dispatchable generation, that is, sources of electricity whose power load can be changed instantaneously with power demand. Further commercial deployment of CSP on a large scale depends on increase of the annual contribution of solar electricity, better coping with the intermittent nature of this resource and rapid integration with existing electrical distribution infrastructure, i.e. smart grids. 
    The technology presented here offers a unique solution to these problems while significantly reducing monetary and environmental costs associated with current CSP systems.
    Unlike conventional thermal CSP plants, the novel method does not require the use of a turbine to convert heat to electricity, and the electricity is directly obtained from the electrochemical cell during its discharge cycle. Moreover, this energy storage technique precludes the use of electric power generators (e.g. turbines, wind turbines, photovoltaic panels) which are often used to recharge electrochemical cells by applying electrical power to the cells' electrode terminals. This reduces expenses and eliminates inefficiencies of a traditional solar electrical plant.

    Applications


    • As modular stand-alone electrical plant for commercial or private use.
    • Integrate into existing power plants for load sharing.

    Advantages


    • Directly transform solar thermal energy into electrical potential energy.
    • Transport of large amounts of water in arid areas is not required.
    • Battery can change loading instantaneously for:
      - Use in smart grid and dispatchable generation
      - Easily Incorporated with other green energy solutions

    Technology's Essence


    This novel system utilizes a rechargeable thermochemical cycle based on Na-S battery technology. The innovation is the exploitation of concentrated solar radiation for thermo-chemical charging instead of electricity from photovoltaic or wind resources as done today. With this concept, a final efficiency of about 50% from solar to electricity can be achieved, which makes a monumental economic impact on existing CSP technologies. The sodium-sulfur battery discharge cycle usually works at temperatures ranging between 300 and 350oC, at which the sodium, sulfur and the reaction product of sodium polysulfide, Na2Sx (where x=3 to 5), exist in their liquid state. Charging of the battery is achieved at temperatures of 1500-1700 oC, when sodium polysulfide is fully decomposed and the full electrical potential of the battery is restored.[1] Instead of charging the Na-S Battery with an external source of electricity to decompose the sodium polysulfide compound back to its Na and S ingredients, it is proposed that the decomposition process will be achieved thermally via CSP.

    +
    • Mr. Michael Epstein
    1750
    Organophosphates are toxic compounds found in chemical warfare agents, such as nerve gases, and insect pesticides.Use of volatile nerve gas agents by terrorist organizations is a key concern of governments around the world. V-type nerve agents (e.g. VX, RVX, and CVX) are particularly toxic nerve gases...

    Organophosphates are toxic compounds found in chemical warfare agents, such as nerve gases, and insect pesticides.
    Use of volatile nerve gas agents by terrorist organizations is a key concern of governments around the world. V-type nerve agents (e.g. VX, RVX, and CVX) are particularly toxic nerve gases, with an exceptionally high potency. Although not as lethal as nerve agents, organophosphate insecticides can be harmful in large or prolonged doses. The standard therapy has limited efficacy, carry risks of serious adverse effects and have relatively short shelf life in field conditions.
    Bioscavengers represent a preferred to rapidly detoxify organophosphates in the blood, before they had the chance to reach its physiological targets and cause damage, but usually require the use of very high doses.
    The present invention provides genetically modified phosphotriesterase (PTE) variants, which serve as catalytic bioscavengers for V-type nerve agents, with exceptional detoxification activity at low doses, and improved stability.

    Applications


    • Prophylactic or post exposure treatment for nerve gases attack, in particular V-type agents
    • Treatment for pesticides poisoning

    Advantages


    • High catalytic activity – allow high efficacy at low doses
    • Reduced effective doses allows to reduce adverse effects
    • High stability increasing shelf life
    • Compatible with both prophylaxis and post exposure
    • Compatible for both surface decontamination and administration to patients

    Technology's Essence


    Researchers at Prof. Tawfik lab use directed evolution to drive protein mutagenesis towards desired traits. Appling this approach, using the actual threat agents, the present inventors generated recombinant phosphotriesterase (PTE) variants with improved catalytic efficiencies towards V-type nerve agent hydrolysis. Serving as catalytic bioscavengers, these recombinant PTE variants hydrolyze organophosphates without being consumed and thus can be applied at low doses (catalytic efficiency (kcat/KM) greater than 3.106 M-1min-1).
    Importantly, PTE is efficient both as a prophylactic agent that may be given several hours prior to exposure as a preventive measure, and as post exposure antidote, even days after in a single or multiple-doses.
    It is compatible with both decontamination of surfaces and detoxification administrated to a patient by standard routes such as orally or injectables.
    Finally, some PTE variants show superior stability properties, retaining at least 50% of their catalytic activity at 50?C, indicating extended shelf life. This may be especially critical in field conditions, where the risk for nerve agent exposure is high.

    +
    • Prof. Dan S. Tawfik
    1712
    • Prof. Yechiel Shai
    1799
    A new computer graphics tool for the efficient and robust deformation of 2D images was developed by the group of Prof. Lipman. Space deformation is an important tool in graphics and image processing, with applications ranging from image warping and character animation, to non-rigid registration and...

    A new computer graphics tool for the efficient and robust deformation of 2D images was developed by the group of Prof. Lipman.

    Space deformation is an important tool in graphics and image processing, with applications ranging from image warping and character animation, to non-rigid registration and shape analysis. Virtually all methods attempt to find maps that possess three key properties: smoothness, injectivity and shape preservation. Furthermore, for the purpose of warping and posing characters, the method should have interactive performance. However, there is no known method that possesses all of these properties.

    Previous deformation models can be roughly divided into meshbased and meshless models. Mesh-based maps are predominantly constructed using linear finite elements, and are inherently not smooth, but can be made to look smooth by using highly dense elements. Although the methods for creating maps with controlled distortion exist, they are time-consuming, and dense meshes prohibit their use in an interactive manner. On the other hand, meshless maps are usually defined using smooth bases and hence are smooth themselves. Yet we are unaware of any known technique that ensures their injectivity and/or bounds on their distortion.

    The new method presented here bridges the gap between mesh and meshless methods, by providing a generic framework for making any smooth function basis suitable for deformation.

    Applications


    • Computer graphics and animation
    • Image registration for medical imaging, satellite imaging and military applications

    Advantages


    • Robust, fast, efficient and scalable

    • Generic, can be applied to various scenarios

    • Possesses smoothness, injectivity and shape preservation with interactive performance


    Technology's Essence


    Deformation od 2D images is accomplished by enabling direct control over the distortion of the Jacobian during optimization, including preservation of orientation (to avoid flips). The method generates maps by constraining the Jacobian on a dense set of ”collocation” points, using an active-set approach. Only a sparse subset of the collocation points needs to be active at every given moment, resulting in fast performance, while retaining the distortion and injectivity guarantees. Furthermore, a precise mathematical relationship between the density of the collocation points, the maximal distortion achieved on them, and the maximal distortion achieved everywhere in the domain of interest is derived.

    +
    • Prof. Ronen Ezra Basri

    Pages