You are here

Category
Technology Name
Briefcase
Scientist
1722
Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater...

Our technology provides a new type of oxidative cleavage reaction of organic compounds with highly selective product formation.
Polyoxometalate (POM) catalysts have become well-known for their utility and diversity in specific reactions. Through the elucidation of POM catalytic pathways, greater versatility has been achieved. This technology is one such application of a novel POM catalyst and is exploited to cleave carbon-carbon double bonds in alkenes (olefins) through an aerobic oxidation reaction. Oxidation reactions are of particular interest because they are difficult to achieve on an industrial scale while maintaining “green” chemistry practices. [1]

--------------------------------------------------------------------------------
[1] Green Chem., 2007, 9, 717-730

Applications


  • As a novel catalyst in industrial organic chemistry processes
  • Sold as a stand-alone catalyst for laboratory or individual use

Advantages


  • Environmentally friendly oxidation reaction
  • Easy catalyst regeneration

Technology's Essence


Our approach is motivated by societal considerations that demand environmentally benign and sustainable solutions for oxidative reactions. As such, we have developed a scheme to react NO2 with a transition-metal-substituted POM which yields a metal-nitro intermediate that is competent for forming the precursors for oxidation with molecular oxygen, O2, to have a final product of ketones and/or aldehydes, and regenerate the POM catalysts.[1]
This method has preference towards di/tri-substituted alkenes. High yields of ketones or aldehydes have been produced and the POM catalyst is regenerated without further oxidation to carboxylic acids, as is typical with other oxidative catalysts.
The selective cleavage of carbon-carbon double or triple bonds with metal-nitro or metal-nitrito compound has not been reported. This exciting new discovery could lead to a wide variety of organic reactions not previously possible, along with revolutionary green oxidative chemistry techniques.

--------------------------------------------------------------------------------
[1] J. Am. Chem. Soc., 2014, 136(31), pp10941-10948 

+
  • Prof. Ronny Neumann
1802
A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations. Pulses are applied in various fields such as oil & gas...

A new signal processing tool for the detection of pulses travelling through media with complex or unknown dispersion properties was developed by the group of Prof. Gal-Yam, originally for detecting radio bursts in astronomical observations.
Pulses are applied in various fields such as oil & gas exploration, detection (e.g. sonar, lidar and radar) and communication. When pulses pass through dispersive media, the arrival times at the detector of different frequency components may differ, and as a result the pulse may become degraded (e.g. transformed to a longer pulse with reduced intensity), even to the level of becoming indistinguishable in terms of signal to noise. This problem becomes even more challenging when detecting short pulses that travel through complex or unknown media.
The new method presented here provides a proven and efficient solution that can be applied for different scenarios where short pulses dispersed by complex media are used. 

Applications


  • Detection and surveying technologies- sonar, lidar, radar etc

Advantages


  • Efficient, requires limited computational resources
  • Generic, can be applied to various setups
  • Easily implementable into existing systems

Technology's Essence


The method includes obtaining an input array of cells, each indicating an intensity of a frequency component of the signal at a representative time. A fast dispersion measure transform (FDMT) is applied to concurrently sum the cells of the input array that lie along different dispersion curves, each curve defined by a known non-linear functional form and being uniquely characterized by a time coordinate and by a value of the dispersion measure. Application of FDMT includes initially generating a plurality of sub-arrays, each representing a frequency sub-band and iteratively combining pairs of adjacent sub-arrays in accordance with an addition rule until all of the initially generated plurality of sub-arrays are combined into an output array of the sums, in which a cell of the output array that is indicative of a transmitted pulse is identified.

+
  • Prof. Avishay Gal-Yam
1704
Neuropathic Gaucher’s (nGD), is a rare but very severe manifestation of the disease, with a varying degree of involvement of the central nervous system, in addition to systemic symptoms. As of today, there is no cure for these severe conditions. The search for such cure is tremendously hindered by the...

Neuropathic Gaucher’s (nGD), is a rare but very severe manifestation of the disease, with a varying degree of involvement of the central nervous system, in addition to systemic symptoms. As of today, there is no cure for these severe conditions.
The search for such cure is tremendously hindered by the unmet need for a reliable biochemical biomarker for nGD.
The present invention identifies the glycoprotein non-metastatic B (GPNMB) as a potential powerful nGD biomarker for use in early diagnosis, determination of disease severity, as well as a straight forward readout in clinical and preclinical experiments.

Applications


Diagnosis and drug development for neuropathic GD

Advantages


Straight forward diagnostic tool – based on standard biochemical assays
Relatively simple clinical procedure – samples are collected from CSF and not brain
High sensitivity – for the diagnosis of disease severity
Compatible with preclinical experiments

Technology's Essence


Prof. Futerman and his team preformed a quantitative global proteomic analysis (using LC-MS/MS) of cerebrospinal fluid (CSF) samples from four patients with Type 3 GD, to identify mis-regulated proteins, compared with healthy subject.
Glycoprotein non-metastatic B (GPNMB), a protein that was previously associated with several lysosomal storage disorders, exhibited very high levels (a 42-fold increase) in the CSF of type 3 GD patients.  Two peptides were identified from GPNMB, both located in the non-cytosolic domain, suggesting that GPNMB is cleaved and secreted into the CSF from the brain. LC-MS/MS results were validated by ELISA and by western blot analysis in CSF and in human brain samples.
Several proof of principle experiments were conducted in order to prove the validity of using GPNMB as a biomarker for monitoring disease state and treatments efficacy in neuropathic GD in patients and mouse models:
GPNMB levels were shown to be correlated with the severity of type 3 Gaucher’s disease patients, as measured by lower IQ score and lower score in Purdue Pegboard test, assessing eye-hand coordination. In addition, using conduritol b epoxide (CBE)-injection based mouse model that simulate different severities and recovery periods, it was shown that GPNMB levels rapidly rise or decline to reliably reflect progress/remission states of the diseases.

+
  • Prof. Anthony H. Futerman
1765
A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron.  Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns....

A new image reconstruction tool based on non-iterative phase information retrieval from a single diffraction pattern was developed by the group of Prof. Oron. 
Lensless imaging techniques enable indirect high resolution observation of objects by measuring the intensity of their diffraction patterns. These techniques utilize radiation in the X-ray regime to image non-periodic objects in sizes that prohibit the use of larger wavelengths. However, retrieving the phase information of the diffraction pattern is not a trivial task, as current methods are divided based on a tradeoff between experimental complexity and computational reconstruction efficiency.
The method described here is suitable for use with existing lensless imaging techniques to provide direct, robust and efficient phase data while requiring reduced computational and experimental complexity. This method, demonstrated in a laboratory setup on 2D objects, is also applicable in 1D. It can be applied to various phase retrieval applications such as coherent diffractive imaging and ultrashort pulse reconstruction

Applications


  • Phase microscopy
  • Signal processing
  • Holography
  • X-ray imaging

Advantages


  • A Generic solution to the phase retrieval problem
  • Non-iterative approach
  • An efficient and noise robust tool

Technology's Essence


The method is based on the fact that the Fourier transform of the diffraction intensity measurement is the autocorrelation of the object. The autocorrelation and cross-correlations of two sufficiently separated objects are spatially distinct. Based on this, the method consists of three main steps: (a) The sum of the objects’ autocorrelations, as well as their cross-correlation, are reconstructed from the Fourier transform of the measured diffraction pattern. (b) The individual objects’ autocorrelations are reconstructed from their sum and the cross-correlation. (c) Using the two intensities and the interference cross term, double-blind Fourier holograph is applied to recover the phase by solving a set of linear equations.

+
  • Prof. Dan Oron
1676
A novel renewable energy method for storage of concentrated solar power (CSP) thermal energy directly to electrochemical energy that can be used for for distribution.A crucial issue for CSP technologies today is providing energy capable of dispatchable generation, that is, sources of electricity whose...

A novel renewable energy method for storage of concentrated solar power (CSP) thermal energy directly to electrochemical energy that can be used for for distribution.
A crucial issue for CSP technologies today is providing energy capable of dispatchable generation, that is, sources of electricity whose power load can be changed instantaneously with power demand. Further commercial deployment of CSP on a large scale depends on increase of the annual contribution of solar electricity, better coping with the intermittent nature of this resource and rapid integration with existing electrical distribution infrastructure, i.e. smart grids. 
The technology presented here offers a unique solution to these problems while significantly reducing monetary and environmental costs associated with current CSP systems.
Unlike conventional thermal CSP plants, the novel method does not require the use of a turbine to convert heat to electricity, and the electricity is directly obtained from the electrochemical cell during its discharge cycle. Moreover, this energy storage technique precludes the use of electric power generators (e.g. turbines, wind turbines, photovoltaic panels) which are often used to recharge electrochemical cells by applying electrical power to the cells' electrode terminals. This reduces expenses and eliminates inefficiencies of a traditional solar electrical plant.

Applications


  • As modular stand-alone electrical plant for commercial or private use.
  • Integrate into existing power plants for load sharing.

Advantages


  • Directly transform solar thermal energy into electrical potential energy.
  • Transport of large amounts of water in arid areas is not required.
  • Battery can change loading instantaneously for:
    - Use in smart grid and dispatchable generation
    - Easily Incorporated with other green energy solutions

Technology's Essence


This novel system utilizes a rechargeable thermochemical cycle based on Na-S battery technology. The innovation is the exploitation of concentrated solar radiation for thermo-chemical charging instead of electricity from photovoltaic or wind resources as done today. With this concept, a final efficiency of about 50% from solar to electricity can be achieved, which makes a monumental economic impact on existing CSP technologies. The sodium-sulfur battery discharge cycle usually works at temperatures ranging between 300 and 350oC, at which the sodium, sulfur and the reaction product of sodium polysulfide, Na2Sx (where x=3 to 5), exist in their liquid state. Charging of the battery is achieved at temperatures of 1500-1700 oC, when sodium polysulfide is fully decomposed and the full electrical potential of the battery is restored.[1] Instead of charging the Na-S Battery with an external source of electricity to decompose the sodium polysulfide compound back to its Na and S ingredients, it is proposed that the decomposition process will be achieved thermally via CSP.

+
  • Mr. Michael Epstein
1733
The spatial distribution of proteins inside the cell is under tight regulation. This regulation is necessary to ensure proper functioning of the cell, and is of particular importance when extracellular stimulation is applied. Upon stimulation, many signaling proteins rapidly and dynamically change...

The spatial distribution of proteins inside the cell is under tight regulation. This regulation is necessary to ensure proper functioning of the cell, and is of particular importance when extracellular stimulation is applied. Upon stimulation, many signaling proteins rapidly and dynamically change their location. Today, there is a widely recognized need to identify novel sequences which regulates nuclear translocation.
Recently, Prof. Zeger and his team discovered a new level of regulation to stimulated transcription. They showed that ?-like importunes are central mediators of nuclear translocation of signaling proteins. Furthermore they identified the site of interaction and designed accordingly a peptide which was found to prevent nuclear translocation.
This technology presents peptides with the potential of treating inflammatory and immune disease by regulating (prevent or promote) the translocation of proteins into the nucleus.

Applications


  • Inflammation
  • Immune diseases

Advantages


  • Effective
  • Safe

Technology's Essence


The researchers found that ?-like importins play a key role in JNK and p38 translocation. They also found that the translocation of these MAPKs is mediated by the formation of either Imp3/Imp7/MAPK or Imp3/Imp9MAPK heterodimers. Most importantly, the researchers identified the site in p38 that mediate the interaction with Imp7 and Imp9 and showed that the important sequence lies within residues 20-30 of p38?. Subsequently they synthesized a 14 amino acid myristoylated peptide based on the sequence of residues 21-34 of p38?. When it was applied to HeLa cells prior to stimulation, it prevented the nuclear translocation and Imp7/9 interaction of the MAPKs. Since the peptides of this technology are able to specifically inhibit the nuclear activities of p38 (such as inflammatory activities) without modulating their cytoplasmic activities, these peptides may serve as a therapeutic agent for inflammatory and apoptosis related diseases without having side effect.

 

+
  • Prof. Rony Seger
1712
  • Prof. Yechiel Shai
1780
A method based on Fast Neutron Resonance Transmission (FNRT) radiography that enables determining weight percentages of oil and water in thick, intact cores taken from subterranean or underwater geological formations. As part of geological exploitation to find oil and water, cores are extracted and...

A method based on Fast Neutron Resonance Transmission (FNRT) radiography that enables determining weight percentages of oil and water in thick, intact cores taken from subterranean or underwater geological formations. As part of geological exploitation to find oil and water, cores are extracted and tested to determine oil/water content.
This new method allows determining such content rapidly, in non- destructive, specific and quantities analysis of the cores.

Applications


  • Determining the identity and proportions of substances of oil and water content and their distribution in inspected cores

Advantages


  • A non-destructive method which enables to determine the fluid content along the entire length of an intact core or aggregate of cores within their protective sleeves.
  • More comprehensive information and considerable saving of analysis time compared to conventional sampling methods.
    Suitable for all types of rocks including tight-shale rocks.
  • This method enables to measure the weight fraction of oil and water in the core regardless of the core shape, thickness or distribution.
  • The fluid weight fractions in the samples are determined independently, thus the ratio of oil-to-rock weight-ratio is independent of the water content.
  • Due to high penetration of fast neutrons, the method is suitable for screening intact thick rock cores (10-15 cm), for which alternative probes, such as X-rays or slow neutrons suffer limited penetration.

Technology's Essence


In order to map the oil and water content and their distribution, an aggregate of intact cores within their protective sleeves is positioned on a moving conveyor belt and scanned by a broad- energy, fast- neutron beam. The neutrons are detected by a spectroscopic fast neutron imaging detector. The map of neutron-transmission spectra in each pixel provides information of oil/water content and distribution in such cores. 

+
  • Prof. Amos Breskin
1684
Gaseous energy sources such as hydrogen and natural gas (predominantly methane) encompass an intrinsic transport problem because of their volatility and flammability. Adsorption of the gas on a solid material (such as MOF) facilitates safe, light and economical transport of the gas. This is especially...

Gaseous energy sources such as hydrogen and natural gas (predominantly methane) encompass an intrinsic transport problem because of their volatility and flammability. Adsorption of the gas on a solid material (such as MOF) facilitates safe, light and economical transport of the gas. This is especially significant in the huge natural gas (NG) market where solutions are required for storage and transport of the gas whether from NG reservoirs in high pressure giant tanks or as a compact low pressure NG tank for small vehicles and other NG powered devices.
The invention involves a new method for the formation of uniform metal organic frameworks (MOFs) at quantitative yields and in a controlled manner.
These MOFs can be tailored to adsorb specific gases for low pressure - high volume storage and transport applications.

Applications


  • Low pressure – high volume gas storage and transportation
  • Safe storage of toxic or otherwise dangerous gases
  • Low energy solid phase gas separation and purification
  • Production of MOF-based catalysts

Advantages


  • Uniform crystallite morphology
  • A quantitative process
  • Ability to design and control product structure
  • Control of pore size
  • Single step process
  • No additives

Technology's Essence


The invention comprises a new solvothermal synthetic procedure in which specific metal ions are selected to react with specific organic ligands to form uniform sub-microstructured MOFs with a narrow size distribution and without the need for a modulator to define the crystal morphology.
Controlling the selected reagents as well as the specific reaction conditions influences the resulting crystallites formed and enables a fine selection of the desired structure.
MOFs prepared this way have exceptional uniformity profiles of size and shape and can be tailored to selectively adsorb specific gases for low pressure - high volume storage and transport applications.

+
  • Prof. Milko E. Van der Boom
1750
Organophosphates are toxic compounds found in chemical warfare agents, such as nerve gases, and insect pesticides.Use of volatile nerve gas agents by terrorist organizations is a key concern of governments around the world. V-type nerve agents (e.g. VX, RVX, and CVX) are particularly toxic nerve gases...

Organophosphates are toxic compounds found in chemical warfare agents, such as nerve gases, and insect pesticides.
Use of volatile nerve gas agents by terrorist organizations is a key concern of governments around the world. V-type nerve agents (e.g. VX, RVX, and CVX) are particularly toxic nerve gases, with an exceptionally high potency. Although not as lethal as nerve agents, organophosphate insecticides can be harmful in large or prolonged doses. The standard therapy has limited efficacy, carry risks of serious adverse effects and have relatively short shelf life in field conditions.
Bioscavengers represent a preferred to rapidly detoxify organophosphates in the blood, before they had the chance to reach its physiological targets and cause damage, but usually require the use of very high doses.
The present invention provides genetically modified phosphotriesterase (PTE) variants, which serve as catalytic bioscavengers for V-type nerve agents, with exceptional detoxification activity at low doses, and improved stability.

Applications


  • Prophylactic or post exposure treatment for nerve gases attack, in particular V-type agents
  • Treatment for pesticides poisoning

Advantages


  • High catalytic activity – allow high efficacy at low doses
  • Reduced effective doses allows to reduce adverse effects
  • High stability increasing shelf life
  • Compatible with both prophylaxis and post exposure
  • Compatible for both surface decontamination and administration to patients

Technology's Essence


Researchers at Prof. Tawfik lab use directed evolution to drive protein mutagenesis towards desired traits. Appling this approach, using the actual threat agents, the present inventors generated recombinant phosphotriesterase (PTE) variants with improved catalytic efficiencies towards V-type nerve agent hydrolysis. Serving as catalytic bioscavengers, these recombinant PTE variants hydrolyze organophosphates without being consumed and thus can be applied at low doses (catalytic efficiency (kcat/KM) greater than 3.106 M-1min-1).
Importantly, PTE is efficient both as a prophylactic agent that may be given several hours prior to exposure as a preventive measure, and as post exposure antidote, even days after in a single or multiple-doses.
It is compatible with both decontamination of surfaces and detoxification administrated to a patient by standard routes such as orally or injectables.
Finally, some PTE variants show superior stability properties, retaining at least 50% of their catalytic activity at 50?C, indicating extended shelf life. This may be especially critical in field conditions, where the risk for nerve agent exposure is high.

+
  • Prof. Dan S. Tawfik
1799
A new computer graphics tool for the efficient and robust deformation of 2D images was developed by the group of Prof. Lipman. Space deformation is an important tool in graphics and image processing, with applications ranging from image warping and character animation, to non-rigid registration and...

A new computer graphics tool for the efficient and robust deformation of 2D images was developed by the group of Prof. Lipman.

Space deformation is an important tool in graphics and image processing, with applications ranging from image warping and character animation, to non-rigid registration and shape analysis. Virtually all methods attempt to find maps that possess three key properties: smoothness, injectivity and shape preservation. Furthermore, for the purpose of warping and posing characters, the method should have interactive performance. However, there is no known method that possesses all of these properties.

Previous deformation models can be roughly divided into meshbased and meshless models. Mesh-based maps are predominantly constructed using linear finite elements, and are inherently not smooth, but can be made to look smooth by using highly dense elements. Although the methods for creating maps with controlled distortion exist, they are time-consuming, and dense meshes prohibit their use in an interactive manner. On the other hand, meshless maps are usually defined using smooth bases and hence are smooth themselves. Yet we are unaware of any known technique that ensures their injectivity and/or bounds on their distortion.

The new method presented here bridges the gap between mesh and meshless methods, by providing a generic framework for making any smooth function basis suitable for deformation.

Applications


  • Computer graphics and animation
  • Image registration for medical imaging, satellite imaging and military applications

Advantages


  • Robust, fast, efficient and scalable

  • Generic, can be applied to various scenarios

  • Possesses smoothness, injectivity and shape preservation with interactive performance


Technology's Essence


Deformation od 2D images is accomplished by enabling direct control over the distortion of the Jacobian during optimization, including preservation of orientation (to avoid flips). The method generates maps by constraining the Jacobian on a dense set of ”collocation” points, using an active-set approach. Only a sparse subset of the collocation points needs to be active at every given moment, resulting in fast performance, while retaining the distortion and injectivity guarantees. Furthermore, a precise mathematical relationship between the density of the collocation points, the maximal distortion achieved on them, and the maximal distortion achieved everywhere in the domain of interest is derived.

+
  • Prof. Ronen Ezra Basri
1690
Optimal growth and metabolic activities of Lactic Acid Bacterial (LAB) starters are critical for assuring high-quality fermentation in the manufacturing process of numerous dairy products. Despite extensive efforts, phage infection of starter cultures for dairy processing remains the most common cause...

Optimal growth and metabolic activities of Lactic Acid Bacterial (LAB) starters are critical for assuring high-quality fermentation in the manufacturing process of numerous dairy products. Despite extensive efforts, phage infection of starter cultures for dairy processing remains the most common cause of slow or incomplete fermentation and product downgrading. Standard anti-phage measures (sanitation, culture handling) fail to provide sufficient protection, exposing the production process to massive economic setbacks.
Extensive R&D efforts have led to the discovery of phage resistance systems, however many phages can circumvent these systems, and in addition not all LABs can accommodate them.
Therefore, there is a strong need for additional defense systems that could naturally protect LABs against phages.
The Sorek laboratory at the Weizmann Institute of Science has recently identified hundreds of novel functional toxin/antitoxin systems in bacterial genomes. These systems were discovered using analysis of data from millions of shotgun cloning experiments across 388 bacterial species. Acting as an abortive infection agent to prevent phage spread, some of these systems were already validated as conferring resistance against phage infection upon introduction to E.coli cells.
In another novel technology, researchers at Dr. Rotem Sorek’s lab identified a novel anti phage gene cassette, termed BREX (Bacteriophage Exclusion), which confers complete or partial resistance against phages spanning a wide phylogeny of phage types, including lytic and temperate ones.

Applications


  • Tools for conferring anti-phage traits to bacterial starters.

Advantages


  • Provides efficient phage-resistance features.
  • Robust: confers resistance to a broad range of phages, including both lytic and temperate ones.
  • General: the same defense system may be applied in various cultures, not confined to specific strains.
  • Novel systems, provides a fresh approach to the field of phage resistance 

Technology's Essence


Toxin/antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, are proposed to function in phage defense via abortive infection. The two genes, which reside on the same operon, code for small proteins where inhibition of the toxin is carried out through protein-protein interaction. Upon a specific signal (phage infection) the antitoxin degrades rapidly by one of the housekeeping bacterial proteases, resulting in either bacteriocidic (cell-killing) or bacteriostatic (growth-inhibiting) effects, thus protecting the colony against phage spread. The inventors took advantage of the concept that toxins could only be cloned when the neighboring antitoxin was present on the same clone to systematically reveal active TA pairs. Following extensive statistical and experimental validations, 8 novel families of TA pairs that are likely to play a role in phage defense were identified. By introducing these systems into new bacteria, the inventors showed that the toxin/antitoxin pairs could protect the engineered bacteria from phage infection.
BREX is a novel cassette of six genes that confers protection against a wide range of phages, including virulent and temperate ones. This cassette is composed of genes not typically found in other defense systems, and hence employs a novel mechanism of anti-phage protection. Scientists at the Sorek lab further uncovered the mode of action of this novel system. It was shown that the system is not an abortive infection system (i.e., does not lead to suicide of the infected cell), and that it allows phage adsorption but blocks phage replication in a DNA degradation independent manner.

+
  • Prof. Rotem Sorek
1752
Heart failure is the leading cause of death in the western world. Existing treatments fail to compensate the irreversible loss of functional cardiomyocytes (CM), thus presenting a major medical unmet need. Inducing native CM replacement is one approach being tested as regenerative treatment, with the...

Heart failure is the leading cause of death in the western world.
Existing treatments fail to compensate the irreversible loss of functional cardiomyocytes (CM), thus presenting a major medical unmet need. Inducing native CM replacement is one approach being tested as regenerative treatment, with the advantage of a more straightforward methodology over cell transplantation approaches. 
In a multidisciplinary study, headed by Prof. Eldad Tzahor from the Weizmann institute of Science, the tyrosine kinase ERBB2 was shown to be both necessary for CM proliferation and sufficient to reactivate postnatal CM proliferative and regenerative potentials.
Thus, potentiation of ERBB2 signalling in adult CMs might represent a promising therapeutic approach for CM replacement in heart failure.

Applications


  • Induction of cardiomyocytes replacement therapy following heart injury.

Advantages


  • Straightforward methodology – Avoids complications associated with the requirement for cell transplantation.
  • Include several optional targets - both ERRB2 and its downstream effectors serve as potential targets for therapeutic agents, which may be administrated in combination, to increase chances for successes. 

Technology's Essence


The ligand-receptor network consisting of NRG1, and its tyrosine kinase receptors ERBB4, ERBB3 and ERBB2, plays critical roles during heart development.
In a multidisciplinary study, headed by prof. Eldad Tzahor from the Weizmann institute of Science, ERBB2 was shown to be necessary and limiting for NRG1-induced CM proliferation in the neonate.
Inspired by this finding, the team examined the possibility to use ERBB2 as a target for induced cell proliferation and regeneration in adult hearts. Using loss- and gain-of-function genetic experiments in mice, they reveal that NRG1/ERBB2 signalling is both essential for CM proliferation and heart integrity in the neonatal period, and sufficient to prolong the postnatal proliferative and regenerative windows.
Regeneration was shown to be a result of increased CM dedifferentiation and proliferation accompanied by neovascularization and followed by redifferentiation, tissue replacement with reduced scar formation and restoration of function.
Thus, these finding highlight ERBB2 as a strong target for heart regeneration treatments as well as its downstream effectors.

+
  • Prof. Eldad Tzahor
1670
A method for selective extraction of precious and rare metals has been developed at the Weizmann Institute. This method allows the efficient and environmentally benign recovery of precious materials that are currently discarded of in large quantities from spent catalysts (automotive and industrial)...

A method for selective extraction of precious and rare metals has been developed at the Weizmann Institute. This method allows the efficient and environmentally benign recovery of precious materials that are currently discarded of in large quantities from spent catalysts (automotive and industrial) from industrial processes (particularly in the electronic industry).

Prof. Igor Lubomirsky’s novel process is based on volatilization for selective extraction of precious and rare metals using benign metal salts, rather than dangerous chlorine gas as a chlorinating agent. The new process requires relatively low temperatures and is free from hazardous waste, among its additional advantages over conventional methods.

We believe that this efficient technology is key to increased reclaimed precious metals output, potentially resulting in the reduction of the demand for primary rare metals.

Applications


·           Recycling precious metals from spent items, e.g. platinum group metals from catalytic convertors


Advantages


·         No toxic input – chlorides are used rather than chlorine gas.

·         No hazardous waste is generated in the process.

·         Mild conditions. High-temperature furnaces and equipment are not required.

·         Relatively simple setup in comparison to conventional ones.

·         Small scale plants are economically viable.


Technology's Essence


Prof. Igor Lubomirsky and his group developed a novel method for the recovery of PGM from spent catalysts that can be applicable for other spent systems as well.

The method comprises of crushing the spent catalyst to obtain a catalyst particulate material with g a predetermined grain size and reacting it with chlorine containing salts rather than pure chlorine gas in a furnace at relatively low temperatures (900oC, far below the temperature required in the conventional volatilization method). This is followed by cooling the volatile PMG chloride product converting it into solid phase metal.

 

+
  • Prof. Igor Lubomirsky
  • Prof. Igor Lubomirsky
1717
Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of...

Converting two low-energy photons into a single higher-energy photon is of significant importance in many fields. In medical imaging, photon up-conversion is used for imaging scattered specimens, while in photovoltaic devices it could be used to harvest photons with energies lower than the bandgap of the absorber.
Currently available systems, based on rare-earth-doped dielectrics, and organic materials are limited in both tunability and absorption cross-section. In fact, no known up-conversion systems operate on photons in the 1000-1500 nm range.
Stable inorganic nanocrystalline up-conversion systems designed at the Weizmann Institute of Science provide broad tunability of both the absorption edge and the luminescence color. These materials have the potential to be utilized in applications such as high-energy photon sources, photovoltaics and IR detection.

Applications


  • Easy to manufacture

  • Robust systems

  • Operation at room temperature


Advantages


  • Photon sources

  • Photovoltaics

  • IR detectors


Technology's Essence


The new up-conversion systems are based on a novel design comprising a compound semiconductor nanocrystal, which incorporates two quantum dots with different bandgaps separated by a tunneling barrier. The expected up-conversion mechanism occurs by the sequential absorption of two photons. The first photon excites an electron–hole pair by interband absorption in the lower-energy core, resulting in a confined hole and a relatively delocalized electron. The second absorbed photon leads to further excitation of the hole, allowing it to cross the barrier layer. This, in turn, is followed by radiative recombination with the delocalized electron.

+
  • Prof. Dan Oron

Pages